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Abstract

Recent studies show that the state-of-the-art deep neural
networks (DNNs) are vulnerable to adversarial examples,
resulting from small-magnitude perturbations added to the
input. Given that that emerging physical systems are us-
ing DNNs in safety-critical situations, adversarial examples
could mislead these systems and cause dangerous situations.
Therefore, understanding adversarial examples in the physi-
cal world is an important step towards developing resilient
learning algorithms. We propose a general attack algorithm,
Robust Physical Perturbations (RP2), to generate robust
visual adversarial perturbations under different physical
conditions. Using the real-world case of road sign classifi-
cation, we show that adversarial examples generated using
RP2 achieve high targeted misclassification rates against
standard-architecture road sign classifiers in the physical
world under various environmental conditions, including
viewpoints. Due to the current lack of a standardized testing
method, we propose a two-stage evaluation methodology for
robust physical adversarial examples consisting of lab and
field tests. Using this methodology, we evaluate the efficacy
of physical adversarial manipulations on real objects. With
a perturbation in the form of only black and white stickers,
we attack a real stop sign, causing targeted misclassification
in 100% of the images obtained in lab settings, and in 84.8%
of the captured video frames obtained on a moving vehicle
(field test) for the target classifier.

1. Introduction

Deep Neural Networks (DNNs) have achieved state-of-
the-art, and sometimes human-competitive, performance
on many computer vision tasks [11, 14, 36]. Based on
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these successes, they are increasingly being used as part
of control pipelines in physical systems such as cars [8, 17],
UAVs [4, 24], and robots [40]. Recent work, however, has
demonstrated that DNNs are vulnerable to adversarial per-
turbations [5, 9, 10, 15, 16, 22, 25, 29, 30, 35]. These carefully
crafted modifications to the (visual) input of DNNs can cause
the systems they control to misbehave in unexpected and
potentially dangerous ways.

This threat has gained recent attention, and work in
computer vision has made great progress in understanding
the space of adversarial examples, beginning in the digi-
tal domain (e.g. by modifying images corresponding to a
scene) [9, 22, 25, 35], and more recently in the physical do-
main [1, 2, 13, 32]. Along similar lines, our work contributes
to the understanding of adversarial examples when pertur-
bations are physically added to the objects themselves. We
choose road sign classification as our target domain for sev-
eral reasons: (1) The relative visual simplicity of road signs
make it challenging to hide perturbations. (2) Road signs
exist in a noisy unconstrained environment with changing
physical conditions such as the distance and angle of the
viewing camera, implying that physical adversarial perturba-
tions should be robust against considerable environmental
instability. (3) Road signs play an important role in trans-
portation safety. (4) A reasonable threat model for transporta-
tion is that an attacker might not have control over a vehicle’s
systems, but is able to modify the objects in the physical
world that a vehicle might depend on to make crucial safety
decisions.

The main challenge with generating robust physical per-
turbations is environmental variability. Cyber-physical sys-
tems operate in noisy physical environments that can de-
stroy perturbations created using current digital-only algo-
rithms [19]. For our chosen application area, the most dy-
namic environmental change is the distance and angle of
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Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust
Physical Perturbations (RP2), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions



and in 87.5% of the extracted video frames against
GTSRB-CNN.

4. To show the generality of our approach, we generate the
robust physical adversarial example by manipulating
general physical objects, such as a microwave. We show
that the pre-trained Inception-v3 classifier misclassifies
the microwave as “phone" by adding a single sticker.

Our work, thus, contributes to understanding the sus-
ceptibility of image classifiers to robust adversarial mod-
ifications of physical objects. These results provide a
case for the potential consequences of adversarial exam-
ples on deep learning models that interact with the physi-
cal world through vision. Our overarching goal with this
work is to inform research in building robust vision mod-
els and to raise awareness on the risks that future phys-
ical learning systems might face. We include more ex-
amples and videos of the drive-by tests on our webpage
https://iotsecurity.eecs.umich.edu/#roadsigns

2. Related Work

We survey the related work in generating adversarial ex-
amples. Specifically, given a classifier f✓(·) with parameters
✓ and an input x with ground truth label y for x, an ad-
versarial example x

0 is generated so that it is close to x in
terms of certain distance, such as Lp norm distance. x0 will
also cause the classifier to make an incorrect prediction as
f✓(x0) 6= y (untargeted attacks), or f✓(x0) = y

⇤ (targeted
attacks) for a specific y

⇤ 6= y. We also discuss recent efforts
at understanding the space of physical adversarial examples.
Digital Adversarial Examples. Different methods have
been proposed to generate adversarial examples in the white-
box setting, where the adversary has full access to the classi-
fier [3,5,9,13,23,29,35]. We focus on the white-box setting
as well for two reasons: (1) In our chosen autonomous ve-
hicle domain, an attacker can obtain a close approximation
of the model by reverse engineering the vehicle’s systems
using model extraction attacks [37]. (2) To develop a foun-
dation for future defenses, we must assess the abilities of
powerful adversaries, and this can be done in a white-box
setting. Given that recent work has examined the black-box
transferability of digital adversarial examples [27], physical
black-box attacks may also be possible.

Goodfellow et al. proposed the fast gradient method that
applies a first-order approximation of the loss function to con-
struct adversarial samples [9]. Optimization based methods
have also been proposed to create adversarial perturbations
for targeted attacks [5, 18]. These methods contribute to
understanding digital adversarial examples. By contrast, our
work examines physical perturbations on real objects under
varying environmental conditions.
Physical Adversarial Examples. Kurakin et al. showed
that printed adversarial examples can be misclassified when

viewed through a smartphone camera [13]. Athalye and
Sutskever improved upon the work of Kurakin et al. and pre-
sented an attack algorithm that produces adversarial exam-
ples robust to a set of two-dimensional synthetic transforma-
tions [1]. These works do not modify physical objects—an
adversary prints out a digitally-perturbed image on paper.
However, there is value in studying the effectiveness of such
attacks when subject to environmental variability. Our object-
constrained poster printing attack is a reproduced version of
this type of attack, with the additional physical-world con-
straint of confining perturbations to the surface area of the
sign. Additionally, our work goes further and examines how
to effectively create adversarial examples where the object
itself is physically perturbed by placing stickers on it.

Concurrent to our work,1 Athalye et al. improved upon
their original attack, and created 3D-printed replicas of per-
turbed objects [2]. The main intellectual differences include:
(1) Athalye et al. only use a set of synthetic transforma-
tions during optimization, which can miss subtle physical
effects, while our work samples from a distribution modeling
both physical and synthetic transformations. (2) Our work
modifies existing true-sized objects. Athalye et al. 3D-print
small-scale replicas. (3) Our work simulates realistic testing
conditions appropriate to the use-case at hand.

Sharif et al. attacked face recognition systems by printing
adversarial perturbations on the frames of eyeglasses [32].
Their work demonstrated successful physical attacks in rela-
tively stable physical conditions with little variation in pose,
distance/angle from the camera, and lighting. This con-
tributes an interesting understanding of physical examples
in stable environments. However, environmental conditions
can vary widely in general and can contribute to reducing
the effectiveness of perturbations. Therefore, we choose the
inherently unconstrained environment of road-sign classifi-
cation. In our work, we explicitly design our perturbations
to be effective in the presence of diverse physical-world con-
ditions (specifically, large distances/angles and resolution
changes).

Finally, Lu et al. performed experiments with physical
adversarial examples of road sign images against detectors
and show current detectors cannot be attacked [19]. In this
work, we focus on classifiers to demonstrate the physical
attack effectiveness and to highlight their security vulnera-
bility in the real world. Attacking detectors are out of the
scope of this paper, though recent work has generated digital
adversarial examples against detection/segmentation algo-
rithms [6, 20, 38], and our recent work has extended RP2 to
attack the YOLO detector [7].

1This work appeared at arXiv on 30 Oct 2017.



3. Adversarial Examples for Physical Objects

Our goal is to examine whether it is possible to create
robust physical perturbations for real-world objects that mis-
lead classifiers to make incorrect predictions even when
images are taken in a range of varying physical conditions.
We first present an analysis of environmental conditions that
physical learning systems might encounter, and then present
our algorithm to generate physical adversarial perturbations
taking these challenges into account.

3.1. Physical World Challenges

Physical attacks on an object must be able to survive
changing conditions and remain effective at fooling the clas-
sifier. We structure our discussion of these conditions around
the chosen example of road sign classification, which could
be potentially applied in autonomous vehicles and other
safety sensitive domains. A subset of these conditions can
also be applied to other types of physical learning systems
such as drones, and robots.
Environmental Conditions. The distance and angle of a
camera in an autonomous vehicle with respect to a road
sign varies continuously. The resulting images that are fed
into a classifier are taken at different distances and angles.
Therefore, any perturbation that an attacker physically adds
to a road sign must be able to survive these transformations
of the image. Other environmental factors include changes
in lighting/weather conditions, and the presence of debris on
the camera or on the road sign.
Spatial Constraints. Current algorithms focusing on digital
images add adversarial perturbations to all parts of the image,
including background imagery. However, for a physical road
sign, the attacker cannot manipulate background imagery.
Furthermore, the attacker cannot count on there being a
fixed background imagery as it will change depending on
the distance and angle of the viewing camera.
Physical Limits on Imperceptibility. An attractive feature
of current adversarial deep learning algorithms is that their
perturbations to a digital image are often so small in magni-
tude that they are almost imperceptible to the casual observer.
However, when transferring such minute perturbations to the
real world, we must ensure that a camera is able to perceive
the perturbations. Therefore, there are physical limits on
how imperceptible perturbations can be, and is dependent
on the sensing hardware.
Fabrication Error. To fabricate the computed perturbation,
all perturbation values must be valid colors that can be repro-
duced in the real world. Furthermore, even if a fabrication
device, such as a printer, can produce certain colors, there
will be some reproduction error [32].

In order to successfully physically attack deep learning
classifiers, an attacker should account for the above cate-
gories of physical world variations that can reduce the effec-
tiveness of perturbations.

3.2. Robust Physical Perturbation

We derive our algorithm starting with the optimization
method that generates a perturbation for a single image x,
without considering other physical conditions; then, we de-
scribe how to update the algorithm taking the physical chal-
lenges above into account. This single-image optimization
problem searches for perturbation � to be added to the input
x, such that the perturbed instance x0 = x+� is misclassified
by the target classifier f✓(·):

min H(x+ �, x), s.t. f✓(x+ �) = y
⇤

where H is a chosen distance function, and y
⇤ is the target

class.2 To solve the above constrained optimization problem
efficiently, we reformulate it in the Lagrangian-relaxed form
similar to prior work [5, 18].

argmin
�

�||�||p + J(f✓(x+ �), y⇤) (1)

Here J(· , ·) is the loss function, which measures the dif-
ference between the model’s prediction and the target label
y
⇤. � is a hyper-parameter that controls the regularization of

the distortion. We specify the distance function H as ||�||p,
denoting the `p norm of �.

Next, we will discuss how the objective function can be
modified to account for the environmental conditions. We
model the distribution of images containing object o under
both physical and digital transformations XV . We sample
different instances xi drawn from X

V . A physical perturba-
tion can only be added to a specific object o within xi. In
the example of road sign classification, o is the stop sign that
we target to manipulate. Given images taken in the physical
world, we need to make sure that a single perturbation �,
which is added to o, can fool the classifier under different
physical conditions. Concurrent work [2] only applies a
set of transformation functions to synthetically sample such
a distribution. However, modeling physical phenomena is
complex and such synthetic transformations may miss physi-
cal effects. Therefore, to better capture the effects of chang-
ing physical conditions, we sample instance xi from X

V

by both generating experimental data that contains actual
physical condition variability as well as synthetic transfor-
mations. For road sign physical conditions, this involves
taking images of road signs under various conditions, such
as changing distances, angles, and lightning. This approach
aims to approximate physical world dynamics more closely.
For synthetic variations, we randomly crop the object within
the image, change the brightness, and add spatial transfor-
mations to simulate other possible conditions.

To ensure that the perturbations are only applied to the
surface area of the target object o (considering the spatial

2For untargeted attacks, we can modify the objective function to max-
imize the distance between the model prediction and the true class. We
focus on targeted attacks in the rest of the paper.



constraints and physical limits on imperceptibility), we in-
troduce a mask. This mask serves to project the computed
perturbations to a physical region on the surface of the object
(i.e. road sign). In addition to providing spatial locality, the
mask also helps generate perturbations that are visible but
inconspicuous to human observers. To do this, an attacker
can shape the mask to look like graffiti—commonplace van-
dalism on the street that most humans expect and ignore,
therefore hiding the perturbations “in the human psyche.”
Formally, the perturbation mask is a matrix Mx whose di-
mensions are the same as the size of input to the road sign
classifier. Mx contains zeroes in regions where no perturba-
tion is added, and ones in regions where the perturbation is
added during optimization.

In the course of our experiments, we empirically observed
that the position of the mask has an impact on the effective-
ness of an attack. We therefore hypothesize that objects
have strong and weak physical features from a classification
perspective, and we position masks to attack the weak areas.
Specifically, we use the following pipeline to discover mask
positions: (1) Compute perturbations using the L1 regular-
ization and with a mask that occupies the entire surface area
of the sign. L1 makes the optimizer favor a sparse pertur-
bation vector, therefore concentrating the perturbations on
regions that are most vulnerable. Visualizing the resulting
perturbation provides guidance on mask placement. (2) Re-
compute perturbations using L2 with a mask positioned on
the vulnerable regions identified from the earlier step.

To account for fabrication error, we add an additional
term to our objective function that models printer color repro-
duction errors. This term is based upon the Non-Printability
Score (NPS) by Sharif et al. [32]. Given a set of printable
colors (RGB triples) P and a set R(�) of (unique) RGB
triples used in the perturbation that need to be printed out in
physical world, the non-printability score is given by:

NPS =
X

p̂2R(�)

Y

p02P

|p̂� p
0| (2)

Based on the above discussion, our final robust spatially-
constrained perturbation is thus optimized as:

argmin
�

�||Mx · �||p + NPS

+ Exi⇠XV J(f✓(xi + Ti(Mx · �)), y⇤)
(3)

Here we use function Ti(·) to denote the alignment function
that maps transformations on the object to transformations on
the perturbation (e.g. if the object is rotated, the perturbation
is rotated as well).

Finally, an attacker will print out the optimization result
on paper, cut out the perturbation (Mx), and put it onto the
target object o. As our experiments demonstrate in the next
section, this kind of perturbation fools the classifier in a

variety of viewpoints.3

4. Experiments

In this section, we will empirically evaluate the proposed
RP2. We first evaluate a safety sensitive example, Stop sign
recognition, to demonstrate the robustness of the proposed
physical perturbation. To demonstrate the generality of our
approach, we then attack Inception-v3 to misclassify a mi-
crowave as a phone.

4.1. Dataset and Classifiers

We built two classifiers based on a standard crop-resize-
then-classify pipeline for road sign classification as described
in [28, 31]. Our LISA-CNN uses LISA, a U.S. traffic sign
dataset containing 47 different road signs [21]. However, the
dataset is not well-balanced, resulting is large disparities in
representation for different signs. To alleviate this problem,
we chose the 17 most common signs based on the number
of training examples. LISA-CNN’s architecture is defined
in the Cleverhans library [26] and consists of three convolu-
tional layers and an FC layer. It has an accuracy of 91% on
the test set.

Our second classifier is GTSRB-CNN, that is trained
on the German Traffic Sign Recognition Benchmark (GT-
SRB) [33]. We use a publicly available implementation [39]
of a multi-scale CNN architecture that has been known to
perform well on road sign recognition [31]. Because we did
not have access to German Stop signs for our physical exper-
iments, we replaced the German Stop signs in the training,
validation, and test sets of GTSRB with the U.S. Stop sign
images in LISA. GTSRB-CNN achieves 95.7% accuracy on
the test set. When evaluating GTSRB-CNN on our own 181
stop sign images, it achieves 99.4% accuracy.

4.2. Experimental Design

To the best of our knowledge, there is currently no stan-
dardized methodology of evaluating physical adversarial
perturbations. Based on our discussion from Section 3.1,
we focus on angles and distances because they are the most
rapidly changing elements for our use case. A camera in
a vehicle approaching a sign will take a series of images
at regular intervals. These images will be taken at differ-
ent angles and distances, therefore changing the amount of
detail present in any given image. Any successful physi-
cal perturbation must cause targeted misclassification in a
range of distances and angles because a vehicle will likely
perform voting on a set of frames (images) from a video
before issuing a controller action. Our current experiments
do not explicitly control ambient light, and as is evident from

3For our attacks, we use the ADAM optimizer with the following pa-
rameters: �1 = 0.9, �2 = 0.999, ✏ = 10�8, ⌘ 2 [10�4, 100]



experimental data (Section 4), lighting varied from indoor
lighting to outdoor lighting.

Drawing on standard practice in the physical sciences, our
experimental design encapsulates the above physical factors
into a two-stage evaluation consisting of controlled lab tests
and field tests.
Stationary (Lab) Tests. This involves classifying images
of objects from stationary, fixed positions.

1. Obtain a set of clean images C and a set of adversar-
ially perturbed images ({A (c)}, 8c 2 C) at varying
distances d 2 D, and varying angles g 2 G. We use
c
d,g here to denote the image taken from distance d and

angle g. The camera’s vertical elevation should be kept
approximately constant. Changes in the camera angle
relative the the sign will normally occur when the car
is turning, changing lanes, or following a curved road.

2. Compute the attack success rate of the physical pertur-
bation using the following formula:

P
c2C

{f✓(A(cd,g))=y⇤ ^f✓(cd,g)=y}
P
c2C

{f✓(cd,g)=y}
(4)

where d and g denote the camera distance and angle for
the image, y is the ground truth, and y

⇤ is the targeted
attacking class.4

Note that an image A (c) that causes misclassification is
considered as a successful attack only if the original image
c with the same camera distance and angle is correctly clas-
sified, which ensures that the misclassification is caused by
the added perturbation instead of other factors.
Drive-By (Field) Tests. We place a camera on a moving
platform, and obtain data at realistic driving speeds. For our
experiments, we use a smartphone camera mounted on a car.

1. Begin recording video at approximately 250 ft away
from the sign. Our driving track was straight without
curves. Drive toward the sign at normal driving speeds
and stop recording once the vehicle passes the sign. In
our experiments, our speed varied between 0 mph and
20 mph. This simulates a human driver approaching a
sign in a large city.

2. Perform video recording as above for a “clean” sign and
for a sign with perturbations applied, and then apply
similar formula as Eq. 4 to calculate the attack success
rate, where C here represents the sampled frames.

An autonomous vehicle will likely not run classification
on every frame due to performance constraints, but rather,

4For untargeted adversarial perturbations, change f✓(ed,g) = y⇤ to
f✓(ed,g) 6= y.

would classify every j-th frame, and then perform simple
majority voting. Hence, an open question is to determine
whether the choice of frame (j) affects attack accuracy. In
our experiments, we use j = 10. We also tried j = 15 and
did not observe any significant change in the attack success
rates. If both types of tests produce high success rates, the
attack is likely to be successful in commonly experienced
physical conditions for cars.

4.3. Results for LISA-CNN

We evaluate the effectiveness of our algorithm by gen-
erating three types of adversarial examples on LISA-CNN
(91% accuracy on test-set). For all types, we observe high
attack success rates with high confidence. Table 1 summa-
rizes a sampling of stationary attack images. In all testing
conditions, our baseline of unperturbed road signs achieves
a 100% classification rate into the true class.
Object-Constrained Poster-Printing Attacks. This in-
volves reproducing the attack of Kurakin et al. [13]. The
crucial difference is that in our attack, the perturbations
are confined to the surface area of the sign excluding the
background, and are robust against large angle and distance
variations. The Stop sign is misclassified into the attack’s
target class of Speed Limit 45 in 100% of the images taken
according to our evaluation methodology. The average con-
fidence of predicting the manipulated sign as the target class
is 80.51% (second column of Table 2).

For the Right Turn warning sign, we choose a mask that
covers only the arrow since we intend to generate subtle
perturbations. In order to achieve this goal, we increase the
regularization parameter � in equation (3) to demonstrate
small magnitude perturbations. Table 4 summarizes our at-
tack results—we achieve a 73.33% targeted-attack success
rate (Table 1). Out of 15 distance/angle configurations, four
instances were not classified into the target. However, they
were still misclassified into other classes that were not the
true label (Yield, Added Lane). Three of these four instances
were an Added Lane sign—a different type of warning. We
hypothesize that given the similar appearance of warning
signs, small perturbations are sufficient to confuse the classi-
fier.
Sticker Attacks. Next, we demonstrate how effective it is
to generate physical perturbations in the form of stickers, by
constraining the modifications to a region resembling graffiti
or art. The fourth and fifth columns of Table 1 show a sample
of images, and Table 2 (columns 4 and 6) shows detailed
success rates with confidences. In the stationary setting, we
achieve a 66.67% targeted-attack success rate for the graffiti
sticker attack and a 100% targeted-attack success rate for the
sticker camouflage art attack. Some region mismatches may
lead to the lower performance of the LOVE-HATE graffiti.
Drive-By Testing. Per our evaluation methodology, we con-
duct drive-by testing for the perturbation of a Stop sign. In



Table 1: Sample of physical adversarial examples against LISA-CNN and GTSRB-CNN.

Distance/Angle Subtle Poster Subtle Poster
Right Turn

Camouflage
Graffiti

Camouflage Art
(LISA-CNN)

Camouflage Art
(GTSRB-CNN)

5’ 0�

5’ 15�

10’ 0�

10’ 30�

40’ 0�

Targeted-Attack Success 100% 73.33% 66.67% 100% 80%

Table 2: Targeted physical perturbation experiment results on LISA-CNN using a poster-printed Stop sign (subtle attacks) and
a real Stop sign (camouflage graffiti attacks, camouflage art attacks). For each image, the top two labels and their associated
confidence values are shown. The misclassification target was Speed Limit 45. See Table 1 for example images of each attack.
Legend: SL45 = Speed Limit 45, STP = Stop, YLD = Yield, ADL = Added Lane, SA = Signal Ahead, LE = Lane Ends.

Distance & Angle Poster-Printing Sticker

Subtle Camouflage–Graffiti Camouflage–Art

5’ 0� SL45 (0.86) ADL (0.03) STP (0.40) SL45 (0.27) SL45 (0.64) LE (0.11)
5’ 15� SL45 (0.86) ADL (0.02) STP (0.40) YLD (0.26) SL45 (0.39) STP (0.30)
5’ 30� SL45 (0.57) STP (0.18) SL45 (0.25) SA (0.18) SL45 (0.43) STP (0.29)
5’ 45� SL45 (0.80) STP (0.09) YLD (0.21) STP (0.20) SL45 (0.37) STP (0.31)
5’ 60� SL45 (0.61) STP (0.19) STP (0.39) YLD (0.19) SL45 (0.53) STP (0.16)

10’ 0� SL45 (0.86) ADL (0.02) SL45 (0.48) STP (0.23) SL45 (0.77) LE (0.04)
10’ 15� SL45 (0.90) STP (0.02) SL45 (0.58) STP (0.21) SL45 (0.71) STP (0.08)
10’ 30� SL45 (0.93) STP (0.01) STP (0.34) SL45 (0.26) SL45 (0.47) STP (0.30)

15’ 0� SL45 (0.81) LE (0.05) SL45 (0.54) STP (0.22) SL45 (0.79) STP (0.05)
15’ 15� SL45 (0.92) ADL (0.01) SL45 (0.67) STP (0.15) SL45 (0.79) STP (0.06)

20’ 0� SL45 (0.83) ADL (0.03) SL45 (0.62) STP (0.18) SL45 (0.68) STP (0.12)
20’ 15� SL45 (0.88) STP (0.02) SL45 (0.70) STP (0.08) SL45 (0.67) STP (0.11)

25’ 0� SL45 (0.76) STP (0.04) SL45 (0.58) STP (0.17) SL45 (0.67) STP (0.08)
30’ 0� SL45 (0.71) STP (0.07) SL45 (0.60) STP (0.19) SL45 (0.76) STP (0.10)
40’ 0� SL45 (0.78) LE (0.04) SL45 (0.54) STP (0.21) SL45 (0.68) STP (0.14)



Table 3: Drive-by testing summary for LISA-CNN. In our baseline test, all frames were correctly classified as a Stop sign. In
all attack cases, the perturbations are the same as in Table 2. We have added the yellow boxes as a visual guide manually.

Perturbation Attack Success A Subset of Sampled Frames k = 10

Subtle poster 100%

Camouflage abstract art 84.8%

Table 4: Poster-printed perturbation (faded arrow) attack
against the LISA-CNN for a Right Turn sign at varying
distances and angles. See example images in Table 1 of the
main text. Our targeted-attack success rate is 73.33%.

Distance & Angle Top Class (Confid.) Second Class (Confid.)

5’ 0� Stop (0.39) Speed Limit 45 (0.10)
5’ 15� Yield (0.20) Stop (0.18)
5’ 30� Stop (0.13) Yield (0.13)
5’ 45� Stop (0.25) Yield (0.18)
5’ 60� Added Lane (0.15) Stop (0.13)

10’ 0� Stop (0.29) Added Lane (0.16)
10’ 15� Stop (0.43) Added Lane (0.09)
10’ 30� Added Lane (0.19) Speed limit 45 (0.16)

15’ 0� Stop (0.33) Added Lane (0.19)
15’ 15� Stop (0.52) Right Turn (0.08)

20’ 0� Stop (0.39) Added Lane (0.15)
20’ 15� Stop (0.38) Right Turn (0.11)

25’ 0� Stop (0.23) Added Lane (0.12)
30’ 0� Stop (0.23) Added Lane (0.15)
40’ 0� Added Lane (0.18) Stop (0.16)

our baseline test we record two consecutive videos of a clean
Stop sign from a moving vehicle, perform frame grabs at
k = 10, and crop the sign. We observe that the Stop sign
is correctly classified in all frames. We similarly test subtle
and abstract art perturbations for LISA-CNN using k = 10.
Our attack achieves a targeted-attack success rate of 100%
for the subtle poster attack, and a targeted-attack success rate
of 84.8% for the camouflage abstract art attack. See Table 3
for sample frames from the drive-by video.

4.4. Results for GTSRB-CNN

To show the versatility of our attack algorithms, we create
and test attacks for GTSRB-CNN (95.7% accuracy on test-
set). Based on our high success rates with the camouflage-art

Table 5: A camouflage art attack on GTSRB-CNN. See
example images in Table 1. The targeted-attack success rate
is 80% (true class label: Stop, target: Speed Limit 80).

Distance & Angle Top Class (Confid.) Second Class (Confid.)

5’ 0� Speed Limit 80 (0.88) Speed Limit 70 (0.07)
5’ 15� Speed Limit 80 (0.94) Stop (0.03)
5’ 30� Speed Limit 80 (0.86) Keep Right (0.03)
5’ 45� Keep Right (0.82) Speed Limit 80 (0.12)
5’ 60� Speed Limit 80 (0.55) Stop (0.31)

10’ 0� Speed Limit 80 (0.98) Speed Limit 100 (0.006)
10’ 15� Stop (0.75) Speed Limit 80 (0.20)
10’ 30� Speed Limit 80 (0.77) Speed Limit 100 (0.11)

15’ 0� Speed Limit 80 (0.98) Speed Limit 100 (0.01)
15’ 15� Stop (0.90) Speed Limit 80 (0.06)

20’ 0� Speed Limit 80 (0.95) Speed Limit 100 (0.03)
20’ 15� Speed Limit 80 (0.97) Speed Limit 100 (0.01)

25’ 0� Speed Limit 80 (0.99) Speed Limit 70 (0.0008)
30’ 0� Speed Limit 80 (0.99) Speed Limit 100 (0.002)
40’ 0� Speed Limit 80 (0.99) Speed Limit 100 (0.002)

attacks, we create similar abstract art sticker perturbations.
The last column of Table 1 shows a subset of experimental
images. Table 5 summarizes our attack results—our attack
fools the classifier into believing that a Stop sign is a Speed
Limit 80 sign in 80% of the stationary testing conditions.
Per our evaluation methodology, we also conduct a drive-by
test (k = 10, two consecutive video recordings). The attack
fools the classifier 87.5% of the time.

4.5. Results for Inception-v3

To demonstrate generality of RP2, we computed physical
perturbations for the standard Inception-v3 classifier [12,34]
using two different objects, a microwave and a coffee mug.
We chose a sticker attack since poster printing an entirely
new surface for the objects may raise suspicions. Note that
for both attacks, we have reduced the range of distances



Table 6: Sticker perturbation attack on the Inception-v3
classifier. The original classification is microwave and the
attacker’s target is phone. See example images in Table 8.
Our targeted-attack success rate is 90%

Distance & Angle Top Class (Confid.) Second Class (Confid.)

2’ 0� Phone (0.78) Microwave (0.03)
2’ 15� Phone (0.60) Microwave (0.11)
5’ 0� Phone (0.71) Microwave (0.07)

5’ 15� Phone (0.53) Microwave (0.25)
7’ 0� Phone (0.47) Microwave (0.26)

7’ 15� Phone (0.59) Microwave (0.18)
10’ 0� Phone (0.70) Microwave (0.09)
10’ 15� Phone (0.43) Microwave (0.28)
15’ 0� Microwave (0.36) Phone (0.20)
20’ 0� Phone (0.31) Microwave (0.10)

Table 7: Sticker perturbation attack on the Inception-v3
classifier. The original classification is coffee mug and the
attacker’s target is cash machine. See example images in
Table 9. Our targeted-attack success rate is 71.4%.

Distance & Angle Top Class (Confid.) Second Class (Confid.)

8” 0� Cash Machine (0.53) Pitcher (0.33)
8” 15� Cash Machine (0.94) Vase (0.04)
12” 0� Cash Machine (0.66) Pitcher (0.25)

12” 15� Cash Machine (0.99) Vase (<0.01)
16” 0� Cash Machine (0.62) Pitcher (0.28)

16” 15� Cash Machine (0.94) Vase (0.01)
20” 0� Cash Machine (0.84) Pitcher (0.09)

20” 15� Cash Machine (0.42) Pitcher (0.38)
24” 0� Cash Machine (0.70) Pitcher (0.20)

24” 15� Pitcher (0.38) Water Jug (0.18)
28” 0� Pitcher (0.59) Cash Machine (0.09)

28” 15� Cash Machine (0.23) Pitcher (0.20)
32” 0� Pitcher (0.50) Cash Machine (0.15)

32” 15� Pitcher (0.27) Mug (0.14)

used due to the smaller size of the cup and microwave com-
pared to a road sign (e.g. Coffee Mug height- 11.2cm, Mi-
crowave height- 24cm, Right Turn sign height- 45cm, Stop
Sign- 76cm). Table 6 summarizes our attack results on the
microwave and Table 7 summarizes our attack results on the
coffee mug. For the microwave, the targeted attack success
rate is 90%. For the coffee mug, the targeted attack success
rate is 71.4% and the untargeted success rate is 100%. Ex-
ample images of the adversarials stickers for the microwave
and cup can be seen in Tables 8 and 9.

5. Discussion

Black-Box Attacks. Given access to the target classifier’s
network architecture and model weights, RP2 can generate a
variety of robust physical perturbations that fool the classi-
fier. Through studying a white-box attack like RP2, we can
analyze the requirements for a successful attack using the

Table 8: Uncropped images of the microwave with an adver-
sarial sticker designed for Inception-v3.

Distance/Angle Image Distance/Angle Image

2’0� 2’15�

5’0� 5’15�

7’0� 7’15�

10’0� 10’15�

15’0� 20’0�

strongest attacker model and better inform future defenses.
Evaluating RP2 in a black-box setting is an open question.
Image Cropping and Attacking Detectors. When evaluat-
ing RP2, we manually controlled the cropping of each image
every time before classification. This was done so the adver-
sarial images would match the clean sign images provided
to RP2. Later, we evaluated the camouflage art attack using
a pseudo-random crop with the guarantee that at least most
of the sign was in the image. Against LISA-CNN, we ob-
served an average targeted attack rate of 70% and untargeted
attack rate of 90%. Against GTSRB-CNN, we observed an
average targeted attack rate of 60% and untargeted attack
rate of 100%. We include the untargeted attack success rates
because causing the classifier to not output the correct traffic
sign label is still a safety risk. Although image cropping has
some effect on the targeted attack success rate, our recent
work shows that an improved version of RP2 can successfully
attack object detectors, where cropping is not needed [7].

6. Conclusion

We introduced an algorithm (RP2) that generates robust,
physically realizable adversarial perturbations. Using RP2,
and a two-stage experimental design consisting of lab and
drive-by tests, we contribute to understanding the space of
physical adversarial examples when the objects themselves
are physically perturbed. We target road-sign classification
because of its importance in safety, and the naturally noisy



Table 9: Cropped Images of the coffee mug with an adver-
sarial sticker designed for Inception-v3.

Distance/Angle Image Distance/Angle Image

8”0� 8”15�

12”0� 12”15�

16”0� 16”15�

20”0� 20”15�

24”0� 24”15�

28”0� 28”15�

32”0� 32”15�

environment of road signs. Our work shows that it is possible
to generate physical adversarial examples robust to widely
varying distances/angles. This implies that future defenses
should not rely on physical sources of noise as protection
against physical adversarial examples.
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