

٦ u	SHA-1 Compression	
	Function	
	 Each round consists of 20 steps, updates the buffer as follows: 	
	(A,B,C,D,E) <- (E+f(t,B,C,D)+(A<<5)+W _t +K _t),A,(B<<30) ,C,D)	
	 t is the step number 	
	 f(t,B,C,D) is a non-linear function for round 	
	 W_t is derived from the message block W_t=S¹(W_{t-16}⊕W_{t-14}⊕W_{t-8}⊕W_{t-3}) 	
	 K_t is a constant value derived from the sin function 	
	 S^k is circular left shift by k bits 	

- Collision-resistant implies one-way
 - main idea: given an algorithm A that (*t*,ε) breaks one-wayness, construct algorithm B, which picks a random x and gives h(x) to A, then A outputs x'. If x'≠x, then a collision is found.
 - Overall, the probability that B succeeds is close to ϵ assuming that the domain of h is significantly larger than the range of h
- Similarly, weak collision-resistant implies one-way

