Introduction to Privacy Preserving Distributed Data Mining

Murat Kantarcioglu

Privacy vs. Data Mining ???

- "Both Parties Wary of Data Mining"
 - (Wired, 01.25.03)
- "Panel Urges New Protection On Federal Data Mining"
 - (NYT, 05.17.04)
- "Survey Finds U.S. Agencies Engaged in 'Data Mining' "
 - (NYT, 05.27.04)
- PRIVACY CAN BE PRESERVED!!!

Privacy and Security Restrictions

- Individual Privacy
 - Nobody should know more about any entity after the data mining than they did before
- Organization Privacy
 - Protect knowledge about a collection of entities
 - Individual entity values may be known to all parties
 - Which entities are at which site may be secret

Privacy constraints don't prevent data mining

- Goal of data mining is summary results
 - Association rules
 - Classifiers
 - Clusters
- The results alone need not violate privacy
 - Contain no individually identifiable values
 - Reflect overall results, not individual organizations

The problem is computing the results without disclosing the data!

Privacy-Preserving Distributed Data Mining: Why ?

- Data needed for data mining maybe distributed among parties
 - Credit card fraud data
- Inability to share data due to privacy reasons
 HIPPAA
- Even partial results may need to be kept private

Secure Multi-Party Computation (SMC)

- The goal is computing a function $f(x_1, x_2, \dots, x_n)$ without revealing x_i
- Semi-Honest Model
 - Parties follow the protocol
- Malicious Model
 - Parties may or may not follow the protocol
- We cannot do better then the existence of the third trusted party situation
- Generic SMC is too inefficient for PPDDM

Secure Multiparty Computation: Definitions

- Secure
 - Nobody knows anything but their own input and the results
 - Formally: \exists polynomial time S such that $\{S(x,f(x,y))\} \equiv \{View(x,y)\}$
- Semi-Honest model: follow protocol, but remember intermediate exchanges
- Malicious: "cheat" to find something out

Distributed Association Rule Mining: Definitions

- Assume there are n sites with transaction databases D_1, D_2, \dots, D_n where each has size $|D_i|$
- An itemset X has a local support $X \cdot \sup_{i}$
- The global support for X (X.sup)

$$X \cdot \sup = \sum_{i=1}^{n} X \cdot \sup_{i=1}^{n} X \cdot \sup_{i$$

Definitions: Continues..

• $X \Rightarrow Y$ is globally supported if

$$\{XUY\}.sup \geq s * \sum_{i=1}^{n} |DB_i|$$

- Global confidence of rule X ⇒ Y is {XUY}.sup / X.sup
- Distributed association rule mining
 - Rules of the form $X \Rightarrow Y$ that has global support and confidence above certain thresholds

Privacy-Preserving Distributed Association Rule Mining.

- Exchanging support counts is enough for mining association rules
- We do not want to reveal
 - which rule is supported(or not) at which site
 - the support count of each rule
 - the database sizes
 - *e.g.* Hospitals may not want to reveal procedures with high mortality rates
 - e.g. Companies may not want to reveal the traces of intrusions

Overview of the Method

- 1. Find the union of the locally large candidate itemsets securely
- 2. After the local pruning, compute the globally supported large itemsets securely
- 3. Check the confidence of the potential rules securely

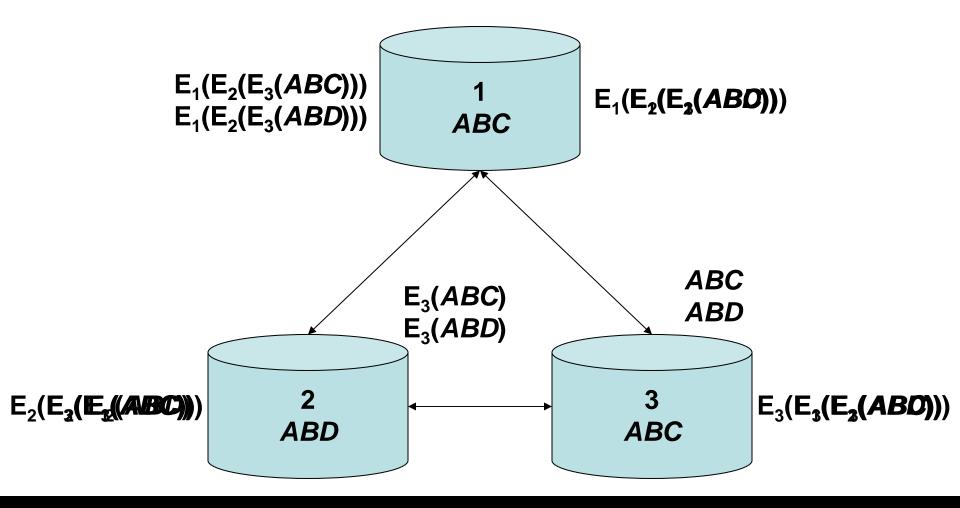
Securely Computing Candidates

- Key: Commutative Encryption $(E_a(E_b(x)) = E_b(E_a(x)))$
 - Compute local candidate set
 - Encrypt and send to next site
 - Continue until all sites have encrypted all rules
 - Eliminate duplicates
 - Commutative encryption ensures if rules the same, encrypted rules the same, regardless of order
 - Each site decrypts
 - After all sites have decrypted, rules left
- Care needed to avoid giving away information through ordering/etc.

Redundancy maybe added in order to increase the security.

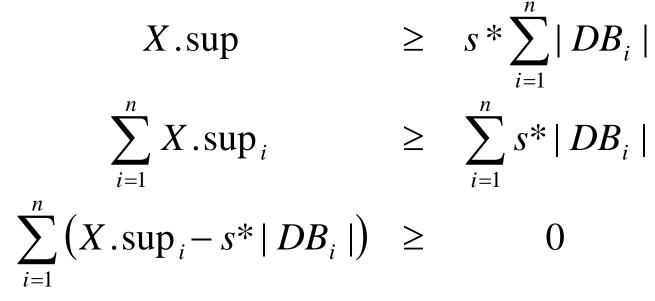
Not fully secure according to definitions of secure multiparty

Computing Candidate Sets

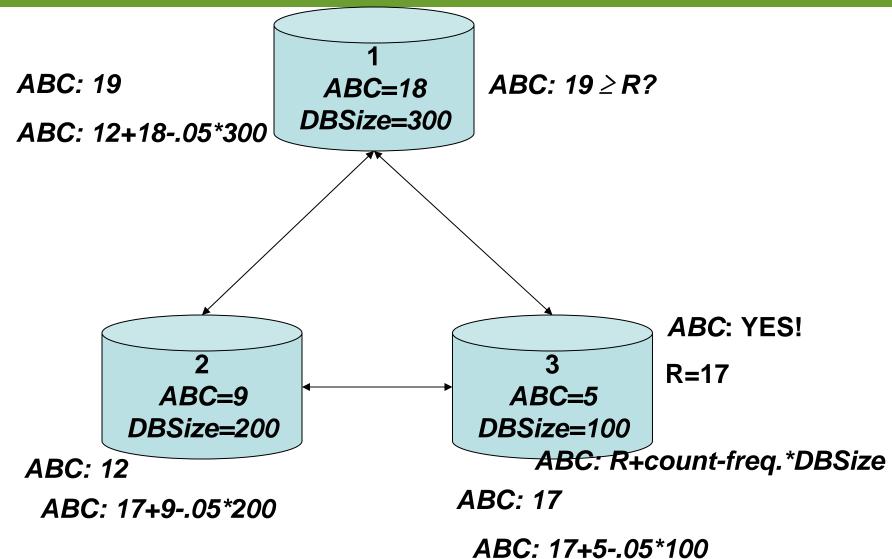


Computing Globally Supported Itemsets

Goal: To find globally supported large itemsets



Computing Frequent: Is $ABC \ge 5\%$?



Proof of Security

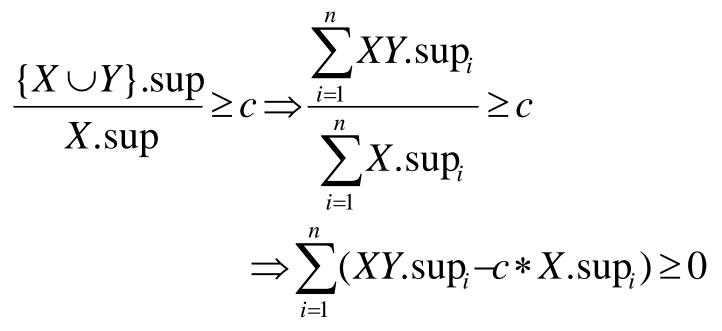
• We can simulate what is seen by each site by a simple random number generator. Because

$$\Pr[View_i^P = x] = \Pr\left[x_r = x - \sum_{k=1}^{k=i-1} x_k\right]$$
$$= \frac{1}{2^m}$$
$$= \Pr[Simulator_i = x]$$

- Therefore during addition nothing is revealed
- Assuming comparison is secure using secure composition thm., we are done.

Computing Confidence

Checking confidence can be done by the previous protocol. Note that checking confidence for X ⇒ Y



Secure Sub-protocols for PPDDM

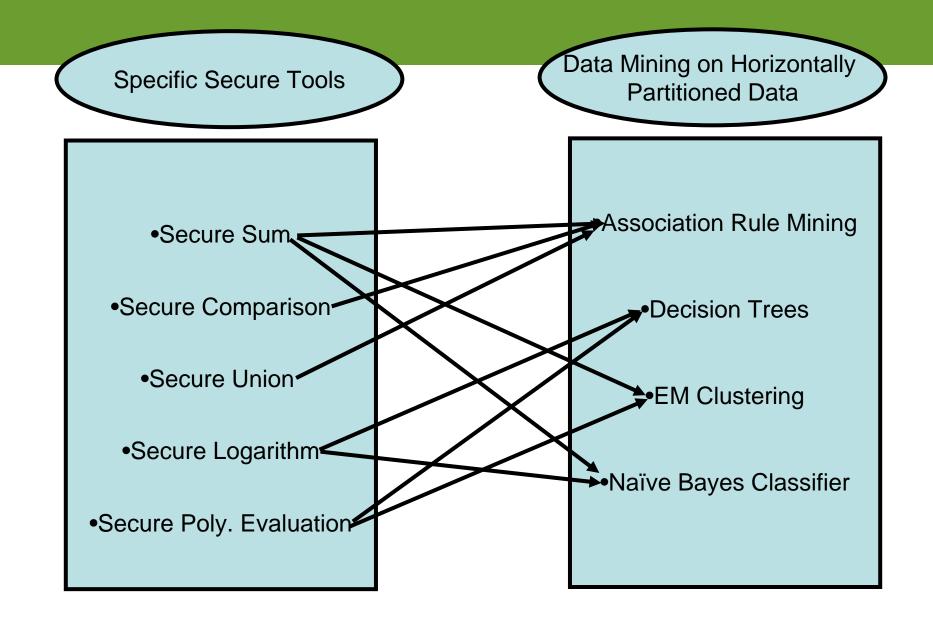
- In general, PPDDM protocols depend on few common sub-protocols.
- Those common sub-protocols could be reused to implement PPDDM protocols

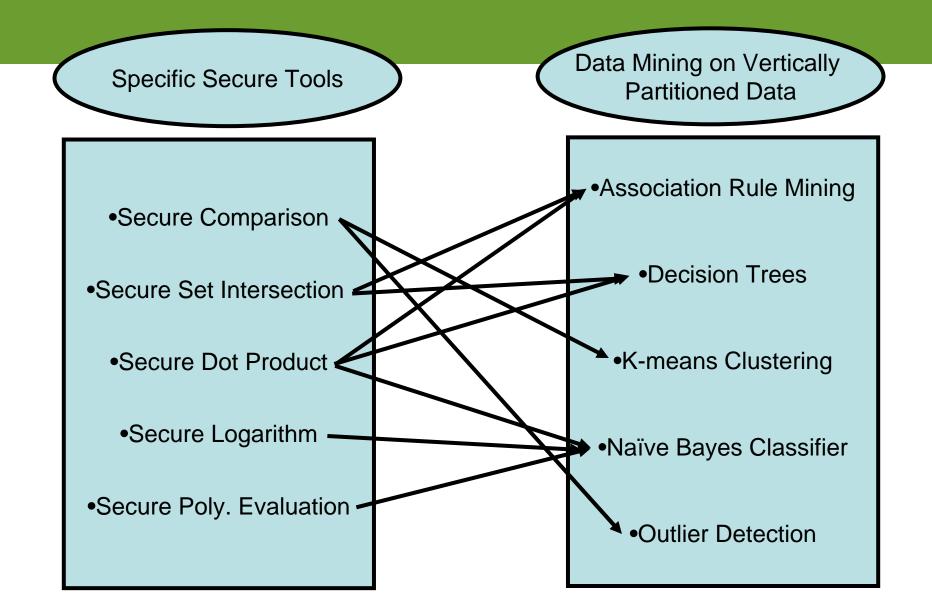
Secure Functionalities Used

- Secure Comparison: Comparing two integers without revealing the integer values.
- Secure Polynomial Evaluation: Party A has polynomial P(x) and Part B has a value b, the goal is to calculate P(b) without revealing P(x) or b
- Secure Set Intersection: Party A has set S_A and Party B has set S_B , the goal is to calculate without revealing anything else.

Secure Functionalities Used

- Secure Set Union: Party A has set S_A and Party B has set S_B , the goal is to calculate $S_A \cup S_B$ without revealing anything else.
- Secure Dot Product: Party A has a vector X and Party B has a vector Y. The goal is to calculate X.Y without revealing anything else.





Summary of SMC Based PPDDM

- Mainly used for distributed data mining.
- Provably secure under some assumptions.
- Learned models are accurate
- Efficient/specific cryptographic solutions for many distributed data mining problems are developed.
- Mainly semi-honest assumption(i.e. parties follow the protocols)
- Malicious model is also explored recently.
- Many SMC based PPDM algorithms share common subprotocols (e.g. dot product, summation, etc.)

Drawbacks for SMC Based PPDDM

- Drawbacks:
 - Still not efficient enough for very large datasets.
 (e.g. petabyte sized datasets ??)
 - Semi-honest model may not be realistic
 - Malicious model is even slower

