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Abstract Many data mining applications, such as spam filtering and intrusion detec-
tion, are faced with active adversaries. In all these applications, the future data sets
and the training data set are no longer from the same population, due to the trans-
formations employed by the adversaries. Hence a main assumption for the existing
classification techniques no longer holds and initially successful classifiers degrade
easily. This becomes a game between the adversary and the data miner: The adversary
modifies its strategy to avoid being detected by the current classifier; the data miner
then updates its classifier based on the new threats. In this paper, we investigate the
possibility of an equilibrium in this seemingly never ending game, where neither party
has an incentive to change. Modifying the classifier causes too many false positives
with too little increase in true positives; changes by the adversary decrease the utility of
the false negative items that are not detected. We develop a game theoretic framework
where equilibrium behavior of adversarial classification applications can be analyzed,
and provide solutions for finding an equilibrium point. A classifier’s equilibrium per-
formance indicates its eventual success or failure. The data miner could then select
attributes based on their equilibrium performance, and construct an effective classifier.
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A case study on online lending data demonstrates how to apply the proposed game
theoretic framework to a real application.

Keywords Adversarial classification · Game theory · Attribute selection ·
Simulated annealing

1 Introduction

Many data mining applications, both current and proposed, are faced with active
adversaries. Problems range from the annoyance of spam to the damage of computer
hackers to the destruction of terrorists. In all of these cases, statistical classification
techniques play an important role in distinguishing the legitimate from the destructive.
There has been significant investment in the use of learned classifiers to address these
issues, from commercial spam filters to research programs such as those on intrusion
detection (Lippmann et al. 2000). These problems pose a significant new challenge
not addressed in previous research: The behavior of a class controlled by the adversary
may adapt to avoid detection. Traditionally a classifier is constructed from a training
data set, and future data sets come from the same population as the training data set.
A classifier constructed by the data miner in such a static environment cannot maintain
its optimal performance for long, when faced with an active adversary.

One intuitive approach to fight the adversary is to let the classifier adapt to the
adversary’s actions, either manually or automatically. Such a classifier was proposed
in Dalvi et al. (2004). The problem is that this becomes a never-ending game between
the classifier and the adversary. Another approach is to minimize the worst case error
through a zero-sum game (Lanckriet et al. 2003; El Ghaoui et al. 2003).

Our approach is not to develop a learning strategy for the classifier to stay ahead of
the adversary. Instead, we propose an Adversarial Classification Stackelberg Game, a
two-player game, to model the sequential moves of the adversary and the data miner.
Each player follows their own interest in the proposed game theoretic framework:
The adversary tries to maximize its return from the false negative items (those that get
through the classifier), and the data miner tries to minimize the misclassification cost.

We then predict the end state of the game—an equilibrium state. When consider-
ing the whole strategy space of all the possible transformations and the penalties for
transformation, an equilibrium state offers insight into the error rate to be expected
from a classifier in the long run. Equilibrium information also offers an alternative to
the minimax approach which could be too pessimistic in some cases.

We examine under which conditions an equilibrium would exist, and provide a sto-
chastic search method and a heuristic method to estimate the classifier performance
and the adversary’s behavior at such an equilibrium point (e.g., the players’ equilib-
rium strategies). Furthermore, for any given set of attributes, we can obtain equilibrium
strategies on the subsets of attributes. Such information is used to select the most effec-
tive attributes to build a classifier. When none of the subset’s equilibrium performance
is satisfactory, the data miner will have to change the rules of the game. For example,
consider new input attributes or increase the penalties for existing ones.
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Predicting the eventual equilibrium state has two primary uses. First, the data miner
can determine if the approach used will have long term value, before making a large
investment into deploying the system. Second, this can aid in attribute selection. While
it may seem that the best solution is simply to use all available attributes, there is often
a cost associated with obtaining the attributes. For example, in spam filtering “white
listing” good addresses and “black listing” bad IP addresses are effective. But besides
blocking some good traffic, a trade-off in the classifier learning process, creating and
maintaining such lists demands effort. Our approach enables the data miner to predict
if such expensive attributes will be effective in the long run, or if the long-term benefit
does not justify the cost. In Sect. 7 we show experimentally that an attribute that is
effective at the beginning may not be effective in the long-term.

Our framework is general enough to be applicable in a variety of adversarial clas-
sification scenarios and can accommodate different classification techniques. Spam
filtering is one such application where classifier degradation is clearly visible and
where we can easily observe the actions taken by the adversary (spammer) and the
classifier (spam filter).1

Another example is botnet detection where several detection algorithms have been
proposed in the literature, each monitoring different sets of attributes (Stinson and
Mitchell 2008). The equilibrium performance of different defensive algorithms can
help the data miner to determine their effectiveness. Furthermore, the data miner can
apply the proposed framework to select the most effective attributes from each defen-
sive approach. In return, these attributes can be combined to build a more robust
defensive algorithm.

Finally, we apply the proposed framework to model online lending data in Sect. 9.
In this case, the adversary’s equilibrium transformation can help the lender to identify
high risk applications and determine how often additional information needs to be
verified to increase the penalty for the adversary.

The paper is organized as follows: In Sect. 2 we present a game theoretic model.
In Sect. 3 we propose a stochastic search method to solve for an equilibrium. We
demonstrate that penalty costs can affect the equilibrium Bayes error in interesting
ways for Gaussian distribution in Sect. 4. We examine the impact of extreme classifi-
cation rules (to pass all or to block all objects) on an equilibrium, using Gaussian and
Bernoulli random variables respectively, in Sect. 5. In Sect. 6 we provide a computa-
tionally efficient heuristic solution for Bayesian classifier, which allows us to handle
high dimensional data. Section 7 presents a simulation study, where we evaluate the
equilibrium performance of multiple combinations of Gaussian attributes, demon-
strating the effect of different combinations of distributions and penalties without
transformation and in equilibrium. Section 8 presents another simulation study with
Bernoulli random variables. Section 9 presents a case study of modeling online lend-
ing data. We conclude with a discussion of future work. First, we discuss related work
below.

1 Please refer to Pu and Webb (2006) for an extensive study of adversarial behavior evolution in spam
filtering.
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1.1 Related work

Learning in the presence of an adaptive adversary is an issue in many different applica-
tions. Problems ranging from intrusion detection (Mahoney and Chan 2002) to fraud
detection (Fawcett and Provost 1997) need to be able to cope with adaptive malicious
adversaries. As discussed in Dalvi et al. (2004), the challenges created by the malicious
adversaries are quite different from those in concept drift (Hulten et al. 2001), because
the concept is maliciously changed based on the actions of the classifier. There have
been applications of game theory to spam filtering. In Androutsopoulos et al. (2005),
the spam filter and spam emails are considered fixed; the game is if the spammer
should send legitimate or spam emails, and the user decides if the spam filter should
be trusted or not. In Lowd and Meek (2005a), the adversary tries to reverse engineer
the classifier to learn the parameters. In Dalvi et al. (2004), the authors applied game
theory to produce a Naïve Bayes classifier that could automatically adapt to the adver-
sary’s expected actions. While recognizing the importance of an equilibrium state,
they simplified the situation by assuming the adversary bases its strategy on the initial
Naïve Bayes classifier rather than their proposed adaptive strategy.

In Lowd and Meek (2005b), the authors studied the impact of attaching words
that serve as strong indicator of regular user emails. The study shows that by adding
30-150 good words, spammer can significantly increase its success rate. In this paper,
we propose a game theoretic model where such conclusions could be reached auto-
matically. In addition, robust classification techniques that use minimax criterion have
been proposed in El Ghaoui et al. (2003) and Lanckriet et al. (2003). Compared to
those works, we assume that the adversary can modify the entire bad class distribu-
tion to avoid being detected. Also our model allows the data miner and the adversary
to have different utility functions. There has been other work on how to construct
robust classifiers for various tasks. For example, in Globerson and Roweis (2006),
the authors constructed robust classifiers in domains such as document classification
by not over-weighting any single attribute. Similarly, in Teo et al. (2008), the authors
applied domain specific knowledge of invariance transformations to construct a robust
supervised learning algorithm. Compared to that work, we incorporate the cost for the
adversaries into our model as well as the cost for data miner.

In online learning such as Cesa-Bianchi and Lugosi (2006), a strategic game has
been used to learn a concept in real time or make a prediction for the near future by
seeing instances one at a time. To the best of our knowledge, those works do not deal
with situations where an adversary changes the distribution of the underlying concept.

Overall, we take a very different approach from the existing work. By directly
investigating an equilibrium state of the game, at which point all parties stick to their
current strategies, we aim at providing a guideline for building classifiers that could
lead to the data miner’s eventual success in the game.

2 A game theoretic model

In this section we present a game theoretic model for adversarial classification appli-
cations. Before we discuss the model in details, we provide a motivating example that
explains the basic aspects of our model.

123



Classifier evaluation and attribute selection 295

2.1 Motivating example

Consider the case where a classifier is built to detect whether a computer is compro-
mised or not by malware that sends spam e-mails. This malware detection system
could be built based on various system wide parameters. For example, looking at the
number of e-mails sent by a compromised computer could be one useful measure to
detect such malware.

In such a scenario, a simple classifier that raises an alarm if the number of e-mails
sent by a computer exceeds a threshold value could be initially very successful. Now
an attacker that designs a malware can reduce the number of spam e-mails sent to avoid
detection. The attacker can possibly reduce the spam e-mails sent per day to near zero
and avoid being detected, but this will not be profitable for the attacker. Afterward,
depending on the number of spam e-mails sent per day, the data miner set a threshold
value. To keep the number of false positives at a reasonable level, the threshold value
chosen to be the classification rule cannot be too small. In such a game the attacker
and the data miner may reach an equilibrium point where both parties have no incen-
tive to change their strategies. The attacker would set the spam e-mails sent per day
to a number that is most profitable: Increasing the number causes the computer to
be detected, and reducing the number is less profitable and not necessary. When the
attacker receives maximum payoff and does not change its strategy, the data miner
does not need to re-set the threshold value: If the threshold used by the classifier were
further lowered to detect the spamming machine, too many legitimate machines would
be misidentified as sources of spam. The important question is whether the classifier
equilibrium performance is satisfactory for the data miner. If not, the data miner would
need a new classification approach, such as including additional attributes (e.g. sys-
tem call sequences executed by the programs) to build a classifier and improve its
equilibrium performance.

Below, we discuss how an example given above could be modeled in our frame-
work to understand the equilibrium performance for a given classifier and the set of
attributes used for building such a classifier.

2.2 Adversarial classification stackelberg game

The adversarial classification scenario is formulated as a two class problem, where
class one (πg) is the “good” class and class two (πb) is the “bad” class. Assume q
attributes are measured from an object coming from either class. We denote the vector
of attributes by x = (x1, x2, . . . , xq)′. Furthermore, we assume that the attributes of an
object x follow different distributions for different classes. Let fi (x) be the probability
density function of class πi , i = g or b. The overall population is formed by combin-
ing the two classes. Let pi denote the proportion of class πi in the overall population;
pg + pb = 1. The distribution of the attributes x for the overall population can be
considered as a mixture of the two distributions, with the density function written as
f (x) = pg fg(x) + pb fb(x).

We assume that the adversary can control the distribution of the “bad” class πb.
In other words, the adversary can modify the distribution by applying a transformation
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T to the attributes of an object x that belongs to πb. Hence fb(x) is transformed into
f T
b (x). Each such transformation comes with a cost; the transformed object is less

likely to benefit the adversary, although more likely to pass the classifier. For exam-
ple, a spammer could send a legitimate journal call for papers; while this would be
hard to detect as spam, it would not result in sales of the spammer’s product. When a
“bad” object from πb is misclassified as a “good” object into πg , it generates profit for
the adversary. A transformed object from f T

b (x) generates less profit than the original
one. In all of the simulation studies, we assume that the values of pg and pb are not
affected by transformation, meaning that adversary transforms the distribution of πb,
but in a short time period does not significantly increase or decrease the number of
“bad” objects. However, for a Bayesian classifier pb and pg are just parameters that
define the classification regions. They can be transformed by the adversary and be
adjusted in Bayesian classifier to optimize the classification rule by data miner. Here
we examine the case where a rational adversary and a rational data miner play the
following game:

1. Given the initial distribution and density f (x), the adversary chooses a transfor-
mation T from the set of all feasible transformations S, the strategy space.

2. After observing the transformation T, data miner creates a classification rule h.

Consider the case where data miner wants to minimize its misclassification cost.
Given transformation T and the associated f T

b (x), the data miner responds with a
classification rule h(x). Let L(h, i) be the region where the objects are classified as
πi based on h(x) for i = g or b. Let the expected cost of misclassification be C(T, h),
which is always positive. Define the payoff function of data miner as

ug(T, h) = −C(T, h).

In order to maximize its payoff ug , the data miner needs to minimize the misclassifi-
cation cost C(T, h).

Note that adversary only profits from the “bad” objects that are classified as “good”.
Also note that transformation may change the adversary’s profit of an object that suc-
cessfully passes detection. Define g(T, x) as the profit function for a “bad” object
x being classified as a “good” one, after transformation T being applied. Define the
adversary’s payoff function of a transformation T given h as the following:

ub(T, h) =
∫

L(h,g)

g(T, x) f T
b (x) dx.

Within the vast literature of game theory, the extensive game provides a suitable
framework for us to model the sequential structure of adversary and data miner’s
actions. Specifically, the Stackelberg game with two players suits our need. In a
Stackelberg game, one of the two players (Leader) chooses an action ab first and the
second player (Follower), after observing the action of the leader, chooses an action ag .
The game ends with payoffs to each player based on their utility functions and actions.
In our model, we assume all players act rationally throughout the game. For the Stac-
kelberg game, this implies that the follower responds with the action ag that maximizes
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ug given the action ab of the first player. The assumption of acting rationally at every
stage of the game eliminates the Nash equilibria with non-credible threats and creates
an equilibrium called the subgame perfect equilibrium.

We assume that each player has perfect information about the other. Here in this
context, “perfect information” means that each player knows the other player’s utility
function. Furthermore, follower observes ab before choosing an action. This assump-
tion is not unreasonable since data and other information are publicly available in many
applications, such as spam filtering. The utilities can be estimated in some application
areas. For the case study in Sect. 9, the penalties for transformation can be measured by
the amount of money the adversary spends to improve its profile. For botnet detection
the penalties for transformation can be the reduction in the amount of traffic generated
by the adversary. In addition, different penalties can be used to run what-if analysis.
For example, in loan applications, to prevent an adversary transforming the home
ownership attribute (falsely claiming to own a home), we can put verification require-
ments in place. Such verification will make it costly to transform the home ownership
attribute in a loan application. Our model can be re-run with different penalties to
predict the effect of instituting such a verification process.

An interesting special case of Stackelberg game is the zero-sum game, when the two
utility functions have the following relationship: ub(T, h) = −ug(T, h) (Basar and
Olsder 1999). In that case, the Stackelberg solution concept for adversarial classifica-
tion corresponds to the minimax solution studied in depth by many authors (Lanckriet
et al. 2003; El Ghaoui et al. 2003). A general Stackelberg solution for the adversarial
classification game automatically handles the minimax solution concept. 2

The game theoretic framework we propose is different than the well known strategic
games, such as non-cooperative strategic games. In a strategic game, each player is not
informed about the other player’s plan of action. Players take “simultaneous” actions.
The famous Nash equilibrium concept (Osborne and Rubinstein 1999) captures the
steady state of such a game. In strategic games, a player cannot change its chosen
action after it learns the other player’s action. Consequently if one player chooses the
equilibrium strategy while the other does not, the result can be bad for both of them.

Compared with strategic games with “simultaneous” actions, we choose the
Stackelberg game to emphasize the sequential actions of the two players. We assume
that the data miner monitors a certain set of attributes through a classifier and the
adversary is aware of the existence of the classifier before the game starts. The data
miner empirically sets the parameters of the classifier in its initial state. This ini-
tial action does not need to be directly modeled by the proposed Stackelberg Game
framework. When the game starts, first the adversary transforms the attributes being
monitored by the classifier to increase its payoff. In the second step, after observing
the transformation employed by the adversary, the data miner optimizes the parameter
values of the classifier. The proposed Stackelberg game mimics the parameter tuning
action, because the data miner enjoys the freedom to adjust the classifier parameters
after it observes a significant change in the data. Although the adversary is the leader
in the game, the data miner chooses a certain set of attributes and builds a classifier

2 Of course, more efficient methods for minimax solution concept could be found using some of the existing
techniques such as the ones given in Lanckriet et al. (2003). Here we focus on the general framework.
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before the game starts. The data miner sets the tone for the game and therefore has the
advantage over the adversary.

We define the Adversarial Classification Stackelberg Game G = (N , H, P, ub, ug):
N = {adversary, data miner}. Set of sequences H = {∅, (T), (T, h)} s.t. T ∈ S and
h ∈ C, where S is the set of all admissible transformations for adversary, and C is
the set of all possible classification rules given a certain type of classifier. Function P
assigns a player to each sequence in H : P(∅) =adversary and P((T)) =data miner.
Equivalently there exists a corresponding function A that assigns an action space to
each sequence in H : A(∅) = S, A((T)) = C, and A((T, h)) = ∅. Payoff functions
ub and ug are defined as above.

In our framework we need the distribution of the “bad” class to understand the
transformation being employed and to assess penalty for the adversary. Depending on
the type of the classifier being used, the knowledge of the distributions may or may
not be necessary to obtain the optimal classification rule employed by data miner. The
classifier can be re-trained using a data set containing the transformed bad instances
that are collected or simulated.

However, we assume that data miner sticks to one type of classifier while the
adversary can choose from all the transformations in the strategy space. For example,
if data miner chooses a Bayesian classifier, it adjusts the Bayesian classifier with new
weights in order to defeat the adversary’s transformations. The data miner will not
use a Bayesian classifier facing certain transformations and a decision tree against
other transformations. This is a realistic assumption because of development costs:
adjusting parameters in a model (or even retraining the model) is much less expensive
than switching to a new model.

We notice that the strategy space of adversary transformations S can be quite com-
plex. However, in reality people have to deal with every transformation employed by
adversary. This is well documented and can be observed from data. In such cases, a
formal model provides a systematic approach to deal with various transformations.

Examining the classifier’s performance at equilibrium, where the adversary max-
imizes its gain given the classifier being optimized to defeat its action, is a sensible
choice in a Stackelberg game. For a fixed transformation, it is true that the problem
reduces to a regular learning problem. On the other hand, given a certain set of attri-
butes monitored through a classifier, every possible transformation and the optimized
classification rule to defeat this transformation generates a corresponding error rate.
The main issue is to know which one of the potential transformations are more likely
to be adopted in practice and what to do about it if such transformation occurs. One
approach is to select a set of attributes that minimizes the worst case error rate under all
possible transformations. For some application areas such as online lending in Sect. 9,
the worst case scenario is unlikely to happen because of the heavy penalties for trans-
formation. Equilibrium information offers an alternative to the minimax approach.
When considering the whole strategy space of all the possible transformations and the
penalties for transformation, an equilibrium state offers insight into the error rate to
be expected from a classifier in the long run. As suggested by our paper, such insights
are used to guide attribute selection.

In this game, we assume that the adversary acts by first applying a transformation T.
After observing T being applied to the “bad” class

(
f T
b (x)

)
, the optimal classification
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rule becomes hT(x). hT(x) is the best response of data miner facing a transformation
T. Let L (hT, g) be the region where the objects are classified as πg given hT. Define
the adversary gain of applying transformation T as:

W (T) = ub (T, hT) =
∫

L(hT,g)

g(T, x) f T
b (x)dx = E f T

b

(
I{L(hT,g)}(x)g(T, x)

)
.

(2.1)

W (T) is the expected value of the profit generated by the “bad” objects that pass detec-
tion under transformation T and the data miner’s optimal classification rule against
T. When both parties are rational players, both attempt to maximize their payoff.
Therefore we can write a subgame perfect equilibrium as (Te, hTe ), where

Te = argmaxT∈S ( W (T) ) . (2.2)

Game theory (Osborne and Rubinstein 1999) establishes that the solution of the above
maximization problem is a subgame perfect equilibrium. Furthermore if the strategy
space S is compact and W (T) is continuous, the maximization problem has a solution.

The above formulation can accommodate any well-defined set of transformations
S, any appropriate distributions with densities fg(x) and fb(x), and any meaningful
profit function g(T, x).

We solve the above equations by exploiting the structure of the game: To search
for an equilibrium in a Stackelberg game is equivalent to solving an optimization
problem. We present a general solution based on stochastic search in Sect. 3, and a
heuristic solution based on an approximation of the classification region for minimal
cost Bayesian classifier in Sect. 6, for high dimensional tasks.

3 Solving for the equilibrium

To search for a subgame perfect equilibrium, the underlying problem is converted to
an optimization problem similar to the one defined by Eq. 2.2 (Basar and Olsder 1999).
Although there are computational game theory tools to find subgame perfect equilibria
for finite games (McKelvey et al. 2007), searching for subgame perfect equilibria is a
hard problem in general (Basar and Olsder 1999). Therefore, optimization techniques
such as genetic algorithms, have been applied to search for subgame perfect equilibria
(Vallee and Basar 1999). To the best of our knowledge, none of the existing compu-
tational game algorithms can be applied to our case due to the special structure of the
adversary gain W (T). Since the integration region L (hT, g) for the adversary gain
W (T) is a function of transformation T, finding an analytical solution to the maximiza-
tion problem is challenging. In addition, even calculating the integration analytically
for a specific transformation is not possible for high dimensional data. We have to eval-
uate W (T) numerically. Because of such difficulties, we consider stochastic search
algorithms for finding an approximate solution. A typical stochastic search algorithm
for optimization problems works as follows: The algorithm starts with a random initial
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point and then searches the solution space by moving to different points based on some
selection criterion. This process involves evaluating the target function at the selected
points in the solution space. Clearly, this implies a computationally efficient method
for calculating W (T) is required, since the function will be evaluated at thousands
of transformations in S. Furthermore, a stochastic search algorithm with the ability
to converge to a global optimal solution is highly desirable. In the rest of this sec-
tion, Monte Carlo integration method is introduced to compute W (T) and simulated
annealing algorithm is implemented to solve for a subgame perfect equilibrium.

3.1 Monte carlo integration

Monte Carlo integration technique converts an integration problem to computing an
expected value. Assume that we would like to calculate

∫
g(x)dx . If we can find a

probability density function f (x) (
∫

f (x)dx = 1) that is easy to sample from, then

∫
g(x)dx =

∫
g(x)

f (x)
× f (x)dx = E f

[
g(x)

f (x)

]
.

∫
g(x)dx is equal to the expected value of g(x)/ f (x) with respect to the density f (x).
The expectation of g(x)/ f (x) is estimated by computing a sample mean. Generate

m samples
{
xi
}

from f (x) and calculate μm = 1/m ×∑m
1

(
g
(
xi
)
/ f
(
xi
))

. When
the sample size m is large enough, μm provides an accurate estimate of

∫
g(x)dx.

The adversary gain W (T) can be written as:

W (T) =
∫ (

IL(hT,g)(x) × g(T, x)
)

f T
b (x)dx.

In the above formula, IL(hT,g)(x) is an indicator function. It returns 1 if a transformed
“bad” object x is classified into πg , else it returns 0. f T

b (x) is naturally a probability
density function. Therefore W (T) could be calculated by sampling m points from
f T
b (x), and taking the average of g(T, x) of the sample points that fall in L (hT, g).

The pseudo-code for Monte Carlo integration is given in Algorithm 3.1.

Algorithm 3.1 Monte Carlo Integration
{Evaluating W (T) for a given transformation T}

Generate m samples
{

xi
}

from f T
b (x)

sum = 0
for i = 1 to m do

if xi ∈ L (hT, g) then

sum = sum + g
(

T, xi
)

end if
end for
return sum/m
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3.2 Simulated annealing

Simulated annealing is a stochastic search method that is based on an analogy from
physics (Duda et al. 2001). Physical systems that have many interacting components
can be in any of the possible states based on some probability distribution. For high
temperatures, a system can be in any one of the possible states with roughly equal
probability. As temperature decreases, the system will choose a low energy state with
higher probability. Similarly, when temperature is high, our simulated annealing algo-
rithm will accept nearly all new points. As temperature gets lower later in the search,
the algorithm will converge to a global optimal solution.

Our version of the simulated annealing algorithm first selects a few random transfor-
mations and tries to get a good starting transformation. After the selection of the initial
transformation, for each temperature, a few hundred transformations are selected from
the neighborhood of the current transformation. A new transformation replaces the cur-
rent transformation if it gives a larger value of W (T). In case the new transformation is
not better than the current one, simulated annealing algorithm may accept it with some
probability. This probability is calculated using the value of the new transformation,
the value of the current transformation, and the current temperature. This probabilistic
step enables the algorithm to escape local maxima (Duda et al. 2001). The current
temperature is decreased by multiplying it by a reduction rate r , where 0 < r < 1.
The whole process is repeated until the algorithm freezes. The pseudo-code is given
in Algorithm 3.2.

Algorithm 3.2 Simulated Annealing Algorithm to Solve for Equilibrium
Require: T empMin, T empMax , Reduction Rate ∈ (0, 1), SampleSi ze
1: Select random T and evaluate W (T)

2: Let Tc be the starting transformation with value evalc = W (Tc)

3: Let Tg be the best transformation seen in the search with value evalg = W (Tg)

4: Tg = Tc , evalg = evalc
5: T empCurrent = T empMax
6: while T empCurrent ≥ T empMin do
7: for i = 1 to SampleSi ze do
8: Randomly select Tn in neighborhood of Tc
9: Let evaln = W (Tn) for Tn
10: if evaln > evalc then
11: Tc = Tn , evalc = evaln
12: if evalg < evaln then
13: Tg = Tn , evalg = evaln
14: end if
15: else if rand(0, 1) ≤ exp

{
evaln−evalc

T empCurrent

}
then

16: Tc = Tn , evalc = evaln
17: end if
18: end for
19: T empCurrent × = Reduction Rate
20: end while

There are several issues about searching for a subgame perfect equilibrium. First of
all, we need a sample of transformed objects, for re-training the classifier and Monte
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Carlo integration. We can solve this problem by either simulating a data set from the
transformed population, or generating transformed samples from a real life data set.
Next we need to re-train the classifier and construct the classification region L (hT, g)

for a selected transformation T during the search process. For the classifiers that require
the knowledge of the density functions, such as minimal cost Bayes classifier, we can
re-train the classifiers by leveraging the established and ongoing research about mul-
tivariate density estimation. For other types of classifiers, such as k-nearest neighbor
and decision tree, we can build the classification regions by using bootstrap samples
or simulated data without the knowledge of the densities. Therefore, our formulation
could work with any type of classifier.

Given a proper cooling schedule, the simulated annealing algorithm has the abil-
ity to approach an equilibrium transformation for the adversary. Afterward we can
obtain the data miner’s corresponding equilibrium classification rule. We have done
experiments to test simulated annealing algorithm’s effectiveness. The results showed
that simulated annealing algorithm performed up to expectation. Details are omitted
from the paper due to limited space. None of the simulations in Sect. 4 uses simulated
annealing, for such a search algorithm demands excessive computational time. Later
in Sects. 6 and 7 and 8, we focus on Bayesian classifier and provide a simple heuristic
solution. The heuristic solution avoids estimating the multivariate density function,
which needs a large sample in high dimensional space. For detailed discussion please
refer to Sect. 6.2.4.

3.2.1 Multiple equilibria and “Clean” bad objects

To apply our game theoretic model to a real problem, the earliest available “bad”
objects can be considered as the “clean” untransformed bad objects. We could then
compare “bad” objects obtained in a latter time with the “clean” bad objects to assess
the extent of transformation and penalty. For example, spam emails collected in the
mid-1990s, could be used as the “clean” bad objects.

Another important issue for the implementation of our game theoretic framework
is how to deal with multiple equilibria. In a Stackelberg game the payoff for the leader
is unique (Basar and Olsder 1999), but the optimal strategy for the leader may not
be unique. Given the leader’s action, the follower chooses the best available strat-
egy. In our case, the optimal classification rule is unique given the leader’s action.
When there are multiple equilibria in an Adversarial Classification Stackelberg game,
multiple transformations will generate identical maximum adversary gains. They may
or may not introduce identical equilibrium Bayes errors or equilibrium misclassifi-
cation costs. Ideally we should investigate all the equilibria, and use either the average
or the maximum of the equilibrium Bayes errors, and the average or the maximum of
the equilibrium misclassification costs for attribute selection.

Mitra et al. (1986) has done a thorough theoretical study of simulated annealing
convergence condition and convergence speed on NP complete problems. As long as
the target function is bounded (it can take arbitrary shape inside the bounds), and tem-
perature decreases at a proper rate (a proper cooling schedule), simulated annealing
algorithm forms a strongly ergodic time inhomogeneous Markov Chain and is able to
converge to a global optimum.
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In our model, our adversary gain is indeed bounded, k1 ≤ W (T) ≤ k2. However,
proofs in Mitra et al. (1986) consider a finite set of discrete variables. In our case, for
continuous transformations, we can cover the strategy space of transformations with
very fine mesh grids. Then we could obtain a good approximation of a global optimum.
An approximate solution can provide important information about the adversary’s long
term plan of action, and can often provide quite accurate estimates of an equilibrium
Bayes error and the associated misclassification cost, as shown in Sects. 5.1, 6.2.1,
and 6.2.2.

4 Equilibrium performance

We have conducted simulations to examine various equilibrium strategies. The results
show that there exist interesting equilibria for this problem. The simulation results
demonstrate the effect of various penalties and cost matrices. For example, the penalty
imposed on a given attribute needs to be larger than a threshold value to force the adver-
sary to stop. Yet after a certain point, further increasing the penalty will not have a
significant impact. It remains a challenge to discover the penalty threshold values
for a given attribute, as well as its effect on classification accuracy. The data miner
could examine the attributes one by one in simulations similar to the one below, given
the attribute’s initial distributions and the misclassification costs. This gives a rough
estimate of how heavy the penalty needs to be for the attribute to be valuable for
classification purposes. In real life applications, attributes with penalties smaller than
the effective values will not have a good long term performance.

All the simulations in this section involve only one attribute. The results are obtained
from exhaustive search on fine grids in the strategy space. By using just one attribute in
the model, we are able to obtain very accurate estimates of equilibrium transformations
without a time consuming stochastic search. Gaussian distributions and minimal cost
Bayesian classifier are used in the experiments. Gaussian distributions have a help-
ful property: after a linear transformation of the attributes, we still have a Gaussian
distribution and an explicit expression for the density. This combination as a simple
example offers important insight into equilibrium strategies. Next we define the profit
function and explain the set-up for the simulations.

4.1 Profit function and gaussian mixture

First define the one-dimensional profit function g(T, x) as:

g(T, x) = max
(

k − a
∣∣∣T −1(x) − x

∣∣∣ , 0
)

, (4.1)

where x is the transformed “bad” object, T −1(x) is the original one, and k and a
are positive constant numbers. To quantify the difference of the “bad” object T −1(x)

before and after transformation T , we compute the absolute value of T −1(x) − x .
k is the constant profit generated by an original “bad” object if it is not detected,
which is also the maximum profit that a “bad” object could possibly generate. In our
simulation study, we assume the profit declines linearly according to the extent of
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the transformation. Here a is the reduction rate. The minimum profit is 0. A “bad”
object will not generate negative profit. This definition of the profit is based on the
following intuition: The more the original distribution changes, the higher the penalty
for the adversary. Although more “bad” objects can avoid being detected, each object
will generate less profit for the adversary. Hence it is possible to reach a point where
adversary stops modifying the objects. Then an equilibrium is established. Further
assume that each class πi , i = g or b, follows a Gaussian distribution. fi (x) is the
density function of N

(
μi , σ

2
i

)
.

Consider the set of linear transformations L. Let T be a real number, and the trans-
formed object x is simply T × T −1(x). Here L will be limited to a certain interval
instead of the entire real line, because equilibrium transformation will not be too far
away from the identity transformation when there is a penalty. Under transformation
T , f T

b (x) becomes the density of N
(
T × μb, T 2 × σ 2

b

)
, which is the new distribution

for the “bad” class πb.
The expected cost of misclassification can be written as in Fukunaga (1990):

C(T, h) =
∫

L(h,g)

(
c(g, g)pg fg(x) + c(g, b)pb f T

b (x)
)

dx

+
∫

L(h,b)

(
c(b, g)pg fg(x) + c(b, b)pb f T

b (x)
)

dx,

where c(i, j) is the cost of classifying an object into class πi given that it belongs to
class π j . The optimal minimal cost Bayesian classification rule under transformation
T is:

hT (x) =
{

πg (c(g, b) − c(b, b))pb f T
b (x) ≤ (c(b, g) − c(g, g))pg fg(x)

πb otherwise

hT (x) is the decision rule that minimizes the expected misclassification cost of the
data miner, C(T, h). Let eg(T) be the percentage of misclassified “good” objects and
eb(T) be the percentage of misclassified “bad” objects. The Bayes error e(T) is defined
as e(T) = pg × eg(T) + pb × eb(T). They are functions of transformation T.

We can re-write the subgame perfect equilibrium transformation using the above
specifications as follows:

T e = argmaxT ∈L

⎛
⎜⎝
∫

L(hT ,g)

max
(

k − a
∣∣∣ x

T
− x
∣∣∣ , 0
)

× f T
b (x) dx

⎞
⎟⎠ . (4.2)

4.2 Adversary gain and bayes error

In the experiments we examine the adversary gain W (T) as a function of T. Further-
more we demonstrate how an equilibrium responds to increasing penalties and various
misclassification costs.
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4.2.1 Effect of penalty and misclassification cost

The general set-up of the experiments is in Sect. 4.1. The parameter values are in
Table 1. There are three experiments. In each experiment we fix a cost matrix c and
the initial distributions of the two classes. We then gradually increase the penalty a.
The only difference among the three experiments is the cost matrix in the Bayesian
classifier. First the cost of misclassifying a “good” object is equal to the cost of misclas-
sifying a “bad” one: c(b, g)/c(g, b) = 1. In the second experiment, misclassifying, a
“good” object costs twice as much: c(b, g)/c(g, b) = 2. Then in the third experiment,
misclassifying a “good” object costs ten times as much: c(b, g)/c(g, b) = 10. From
the three experiments, we are able to observe the effect of misclassification cost and
penalty for transformation on equilibrium strategies.

When T = 1, πb is not transformed. The initial adversary gain W (1) and the
initial Bayes error e(1) are the gain and the error rate under identity transformation,
i.e., without transformation. Notice that they are not affected by the penalty a under
the current set-up, since T −1(x) − x = 0. W (1) and e(1) are only related to the cost
matrix c. Without any transformation, the classifier achieves very high success rate as
shown in both Fig. 1 and Table 1. When increasing the cost of misclassifying a “good”
object slightly, the error rate moves from 0.0022 to 0.0041, and the adversary gain
moves from 0.0045 to 0.0113.

However when the adversary starts to transform the “bad” objects, even the optimal
classification rule against the transformation fails to block a significant proportion of

Table 1 Parameter values for three experiments

k Cost c πg pg πb pb W (1) e(1)

Experiment 1 1

[
0 1
1 0

]
N (5, 0.64) 0.65 N (1, 0.36) 0.35 0.0045 0.0022

Experiment 2 1

[
0 1
2 0

]
N (5, 0.64) 0.65 N (1, 0.36) 0.35 0.0059 0.0027

Experiment 3 1

[
0 1
10 0

]
N (5, 0.64) 0.65 N (1, 0.36) 0.35 0.0113 0.0041
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Fig. 1 Left: the adversary gains for increasing penalty; Right: the Bayes error. Both for Experiment 1
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Fig. 2 Top left: the equilibrium adversary gains; Top right: the equilibrium Bayes errors; Bottom left: the
equilibrium transformations. Penalty a from 0 to 0.7 by 0.1

the transformed “bad” objects. It also makes a few mistakes with the “good” objects.
Since we set k = 1, we have W (T ) = eb(T ) when a = 0. Also notice that the Bayes
error (the overall misclassification error rate) as a function of T is not affected by
the penalty a. Increasing the penalty a reduces the adversary gains for all the trans-
formations because a “bad” object generates less profit, as shown in the left panel of
Fig. 1.

Figure 2 illustrates the effect of penalty a more clearly. As a increases from 0 to
0.7, the equilibrium transformation is pushed toward 1 (i.e., the identity transforma-
tion). Both the equilibrium adversary gain and the equilibrium Bayes error drop down
to near 0. The equilibrium Bayes error moves closer to the initial Bayes error as the
equilibrium transformation moves toward the identity transformation.

The left panel of Fig. 2 shows that a = 0.2 is an elbow point of the equilibrium
adversary gain W (T e). For a heavy penalty a ≥ 0.2, W (T e) is close to 0, and the
equilibrium Bayes error e (T e) starts declining sharply. Misclassification costs also
affect the equilibrium performance. As the cost of misclassifying a “good” object
c(b, g) increases, the equilibrium Bayes error and W (T e) both become larger.

To more carefully examine the effect of penalties and cost matrices on the equilib-
rium Bayes error and the equilibrium transformation, we gradually increase a from
0 to 0.2 (a moderate penalty) in 0.01 increments. In Fig. 3, W (T e) decreases as a
increases for all three cost matrices. The equilibrium transformation T e starts moving
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Fig. 3 Top left: the equilibrium adversary gains; Top right: the equilibrium Bayes errors; Bottom left: the
equilibrium transformations. Penalty a from 0 to 0.2 by 0.01

notably toward 1 only when a exceeds certain threshold values. The same phenom-
enon occurs for the equilibrium Bayes error e (T e). When the cost of misclassifying
a “good” object c(b, g) is equal to c(g, b), it required a heavier penalty for T e to
significantly move toward identity transformation and for e (T e) to drop.

Above results indicate that when the data miner chooses to monitor certain attributes
in order to block the “bad” objects, it may achieve great success at the beginning. How-
ever, when facing an active adversary, the distribution of one class will be modified
constantly and the performance of a classifier depends heavily on how the adversary
will transform the “bad” class. We should focus on a classifier’s equilibrium perfor-
mance, where the adversary maximizes its gain, instead of its initial success. Our game
theoretic model has the ability to predict a classifier’s eventual effectiveness without
waiting for the adversary to apply all sorts of transformations.

When facing an active adversary, all the following three quantities can be used to
evaluate a classifier’s equilibrium performance, which in turn indicates a classifier’s
long term success or failure. These three quantities are stated as follows: (1) Classi-
fier’s equilibrium Bayes error and misclassification cost; (2) Adversary’s equilibrium
transformation; (3) Adversary’s equilibrium gain. Clearly these three quantities are
correlated. At the first glance, it seems like if the adversary’s equilibrium transfor-
mation is close to the identity transformation, then the data miner wins the battle.
However when the cost of misclassifying “good” objects is high, the classifier will
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pass more objects from both classes. In this case the adversary does not have to trans-
form much to maximize its gain. This is not a favorable scenario for the data miner.
Figure 3 shows that adversary’s equilibrium transformation might be close to the iden-
tity transformation, yet the adversary manages to have more “bad” objects pass the
classifier and receives big profit from each “bad” object. Therefore in Sect. 6, we
only use the classifier’s equilibrium Bayes error and expected misclassification cost to
examine the long term effectiveness of a given set of attributes. After all, a classifier
is built to block the “bad” objects without making too many mistakes with the “good”
ones.

5 Extreme classification rules

A minimal cost Bayesian classifier under certain conditions may create one of the
two extreme classification rules: Either pass all the objects, or block all the objects.
Next we study two one-dimensional examples, using Gaussian and Bernoulli random
variables respectively. We examine the impact of such extreme classification rules on
equilibrium strategies. The two examples show that an approximate solution provides
information about the adversary’s potential action. It reveals how attributes will be
transformed to maximize the adversary gain and the magnitude of such transforma-
tions.

5.1 One discontinuous point

Here we present a special one-dimensional Gaussian example. The experiment set-
ting follows the one in Sect. 4.1. The profit function is the same as Eq. 4.1. Unlike
Sect. 4, now there exists a transformation T0 that makes two classes indistinguishable
(i.e., f T0

b (x) = fg(x)). Then a Bayesian classifier, depending on the misclassifi-
cation costs and the population proportions pg and pb, will either pass all objects
or block all objects. In this example πg has distribution N (0.2160, 0.3168), and πb

has distribution N (0.36, 0.88). T 0 = 0.6 will transform fb(x) into fg(x). We set
pg = pb = 0.5, k = 1, c(g, g) = c(b, b) = 0, c(b, g)/c(g, b) = 1, and penalty
a = 0. We observe that the adversary gain W (T ) is discontinuous at T 0 = 0.6.

In Fig. 4, the value of the adversary gain W (T ) is plotted against the transforma-
tion T . When there is no penalty for transformation (a = 0), and misclassification
cost of “good” objects is the same as the misclassification cost of “bad” objects, the
classification rule is to pass all objects given transformation T 0 = 0.6. The error rate
in the “bad” class πb is 100%. The adversary gain W (T ) reaches a maximum value
1. T 0 = 0.6 and the classification rule to pass all objects form the equilibrium.

W (T ) is continuous everywhere else except for the equilibrium transformation
T 0 = 0.6. The discontinuity is created by the sudden change of the classification
region. At T 0 the “bad” class coincides with the “good” class, and the Bayesian clas-
sifier decides to pass all objects. We then integrate over the entire space to compute
W (T ). In this case, a stochastic search algorithm is unlikely to return the exact trans-
formation T 0 and the corresponding classification rule. We will be able to discover
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an approximate solution T = 0.6 + ε, where ε > 0. The associated Bayes error
e(T ) and the adversary gain W (T ) are much smaller than the equilibrium ones. How-
ever the approximate solution informs us toward which direction the attribute will be
transformed.

5.2 One-dimensional Bernoulli

In spam filtering, many attributes are binary and can be modeled as Bernoulli random
variables. For example, the popular spam filtering software SpamAsssassin works by
“scoring” every e-mail message based on a range of tests designed to decide if that
email is spam or not (e.g., checking if the body contains any forbidden words). Each
test can be considered as a Bernoulli variable with two values, “pass” or “fail”. The
sum of the individual test scores is an email’s overall spam score. Emails with spam
scores over a certain user-controlled threshold value are classified as spam. In addi-
tion to these tests, SpamAssassin uses a modified Naïve Bayes algorithm. Although
SpamAssassin is not purely Naïve Bayes, the following experiments attempt to mimic
a component of the spam filter. Our results could be useful for tools such as Spam
Assassin to evaluate different attributes.

Based on the above intuition, we first consider one Bernoulli variable X . We use
the following probabilities. In the “good” class πg let

X =
{

1 with probability rg

0 with probability 1 − rg

In the “bad” class πb the initial probabilities before transformation are

T −1(X) =
{

1 with probability rb

0 with probability 1 − rb
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Many attributes are selected to build a classifier if they are highly likely to appear
in the “bad” class and rarely appear in the “good” class or vice-versa. If an attribute
is a strong indicator of spam emails, such as containing a blacklisted IP address, we
assume X = 1 means it appears in the email. On the other hand an attribute (a good
word) that serves as a strong indicator of legitimate emails will have X set to 1 if an
email does not contain that good word. Then a Bernoulli attribute will always have rg

close to 0 and rb close to 1. A transformation adopted by the adversary will reduce
the difference between rb and rg .

In real life, spam emails have become the majority. Hence the size of the “bad”
class pb is much greater than the size of the “good” class pg, pb >> pg .

We model the transformation of a Bernoulli variable X as a probability T : With a
probability T (0 ≤ T ≤ 1), a “1” in the “bad” class will be switched to a “0”. When
T = 0, the “bad” objects are not transformed. It has the same effect as what identity
transformation does for Gaussian distribution. Then the transformed “bad” class has
the following probability function:

X =
{

1 with probability rb × (1 − T )

0 with probability 1 − rb + rb × T

A transformation employed by the adversary will be penalized. Here we introduce
a profit function defined by Eqs. 5.1 and 5.2 for Bernoulli variable X . It assumes the
following structure: If a “bad” object is being successfully transformed (T −1(X) = 1
and X = 0), the transformation will be most heavily penalized. If the transformation
is not successful (T −1(X) = 1 and X = 1), it will be lightly penalized. If originally
a “bad” object is not on the blacklist, then it will not be transformed nor penalized(
T −1(X) = X = 0

)
. For example, obfuscating a word always reduces readability of a

spam email. Obfuscating a word to the degree that a filter cannot recognize it heavily
reduces readability and consequently heavily reduces response rate to an email spam.
We have k > 1 and a < 1 for Eqs. 5.1 and 5.2.

g(T, X) =
⎧⎨
⎩

ka(T ) if T −1(X) = 1 and X = 0

k
1+a(T )

2 if T −1(X) = 1 and X = 1,

k if T −1(X) = X = 0
(5.1)

where penalty a(T ) is a function of T :

a(T ) =
{

a × (1 − T ) if a ≥ 0
a × T if a < 0

(5.2)

The region L(hT , g) where objects are classified as “good” becomes:

(c(g, b) − c(b, b)) × pb

(c(b, g) − c(g, g)) × pg
× (rb(1 − T ))X (1 − rb + rbT )1−X

(rg)X (1 − rg)1−X
≤ 1.

A Bernoulli variable X can take only two values (0 or 1) in both classes. The two
extreme classification rules happen quite often, as shown in Sect. 5.2.1.
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Fig. 5 Top left: adversary gains; Top right: “good” class error rates; Bottom left: “bad” class error rates.
c(b, g)/c(g, b) = 3

5.2.1 Experiment one

Here we apply profit function defined by Eqs. 5.1 and 5.2 with a = 0.5 and k = 3.
We set the initial probabilities in each class as rb = 0.8 and rg = 0.1. We have the
population proportions as pb = 0.8 and pg = 0.2. The transformation T is from
0.01 to 0.99 by an increment of 0.01. We assume correct classification cost is 0:
c(g, g) = c(b, b) = 0. The misclassification cost of “good” object usually is much
bigger. We examine two sets of misclassification costs: (1) c(b, g)/c(g, b) = 3; (2)
c(b, g)/c(g, b) = 6.

Figure 5 shows the adversary gain and the error rates in two classes, given
the misclassification cost of “good” objects is three times that of “bad” objects,
c(b, g)/c(g, b) = 3. Straightforward calculation shows when 19

32 < T < 29
32 , the

classifier blocks all objects and cause 100% error in the “good” class πg . As T
increases from 0, more “bad” objects disappear from the blacklist and the adver-
sary gain increases. The equilibrium transformation is T = 19

32 , right before a slightly
heavier transformation triggers the block-all classification rule. rb(1 − T ) = 0.3250.
At the equilibrium, whenever X = 1, it is classified into πb. All 0s are classified into
πg . When T ≥ 29

32 , it is the opposite: all 1s are classified into “good” class and all 0s
into “bad” class.
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0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Transformation T 

A
dv

er
sa

ry
 G

ai
n

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transformation T 

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Transformation T 

E
rr

or
 R

at
e 

in
 π

g 

E
rr

or
 R

at
e 

in
 π

b 

Fig. 6 Top left: adversary gains; Top right: “good” class error rates; Bottom left: “bad” class error rates.
c(b, g)/c(g, b) = 6

Figure 6 shows the adversary gain and the error rates in two classes, given the
misclassification cost of “good” objects is six times that of “bad” objects, i.e.,
c(b, g)/c(g, b) = 6. As the misclassification cost of “good” objects becomes big-
ger, the classifier tends to pass more objects. When T ≥ 13

16 , the optimal classification
rule is to pass all objects, producing 100% error in the “bad” class πb. The equilib-
rium transformation is T = 13

16 . It is the smallest transformation to force the Bayesian
classifier to pass all objects. rb(1− T ) (0.15) is very close to rg (0.1). The equilibrium
classification rule is to pass all. Further increase in T (i.e., T > 13

16 ) receives heavier
penalty, therefore reduces the adversary gain.

5.2.2 Experiment two

Next we fix c(b, g)/c(g, b) = 3, c(b, b) = c(g, g) = 0, pg = 0.2, pb = 0.8,

rg = 0.1, and rb = 0.8. We examine the impact of penalty on equilibrium strategies
using profit function defined by Eqs. 5.1 and 5.2. We gradually reduce penalty a in
Eq. 5.2 from 0.9 to −4 by 0.1. Only when a ≤ −1.5, the equilibrium transformation
becomes significantly smaller than 19

32 as shown in Fig. 7. For Bernoulli random vari-
ables, only really heavy penalty will discourage the adversary from transforming the
objects under its control. Meanwhile in order to reduce equilibrium Bayes error, data
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Fig. 7 Top left: Equilibrium transformations; Top right: Equilibrium adversary gains; Bottom left: Equi-
librium Bayes errors

miner needs some tolerance for making a wrong decision with a “good” object. This
is different from Gaussian case, where even very small penalty can discourage the
adversary. We report a simulation study with multiple Bernoulli variables in Sect. 8.

6 A heuristic solution for Bayesian classifier

Section 3 provides a general solution that works well in lower dimensional space. In
high dimensional space a large sample is needed to estimate the adversary gain W (T)

using Monte Carlo integration. Furthermore, simulated annealing algorithm evaluates
large number of transformations before it converges. To conquer the computational
issues associated with the algorithms in Sect. 3, we propose an approximate solution
in this section. We focus on the Bayesian classifier, because it has an explicit clean
expression for the classification regions. For two attributes or more in the model,
results are developed under the following assumptions.

1. Attributes x1, x2, . . . , xq are independent.
2. The profit function g(T, x) = ∑q

j=1 g j
(
Tj , x j

)
, where ∀ j, g j

(
Tj , x j

) ≥ 0.
Here we assume each attribute is penalized individually.

When the attributes are correlated in data, the effect of the above conditions is
similar to Naïve Bayes classifier. The classification rule is determined by the product
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of the marginal densities instead of the joint density. Naïve Bayes classifier has good
performance even if attributes are correlated. The simulation results in this section
show that the heuristic solution developed under the above condition also has good
performance when attributes are correlated.

The region where objects are classified into the “good” class πg is:

L (hT, g) =
{

x : (c(g, b) − c(b, b)) × pb × f T
b (x)

≤ (c(b, g) − c(g, g)) × pg × fg(x)
}
.

Under the independence assumption the density of the “good” class πg is

fg(x) =
q∏

j=1

fg, j
(
x j
)
,

and the density of the “bad” class πb is

f T
b (x) =

q∏
j=1

f
Tj
b, j

(
x j
)
.

L (hT, g) can be written as:

L (hT, g) =
⎧⎨
⎩x :

q∏
j=1

⎛
⎝
(

(c(g, b) − c(b, b)) × pb

(c(b, g) − c(g, g)) × pg

) 1
q × f

Tj
b, j

(
x j
)

fg, j
(
x j
)
⎞
⎠ ≤ 1

⎫⎬
⎭

(6.1)

Notice that this is the classification region of the Naïve Bayes classifier regardless of
whether the attributes are correlated or not. Let

y j =
(

(c(g, b) − c(b, b)) × pb

(c(b, g) − c(g, g)) × pg

) 1
q × f

Tj
b, j

(
x j
)

fg, j
(
x j
) . (6.2)

From now on we only consider the case where

c(g, b) − c(b, b) > 0,

and

c(b, g) − c(g, g) > 0.

Then ∀ j, y j > 0. We have L (hT, g) = {x :∏q
1 y j ≤ 1

}
. The region where objects

are classified into the “bad” class πb can be written as L (hT, b) = {x :∏q
1 y j > 1

}
.

Notice L (hT, g) + L (hT, b) = Rq , where Rq is the q-dimensional Euclidean space
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(i.e., the whole sample space). Our simulation results shown in the following sections
indicate that even if the independence assumption is not satisfied, the approximate solu-
tion points to the neighborhood of a true equilibrium. We meet the second assumption
by approximating the exact profit function.

6.1 Lower and upper bounds of the classification regions

In high dimensional space, it takes a huge Monte Carlo sample to estimate the adver-
sary gain W (T). The Monte Carlo sample size required in the estimation process grows
as the number of attributes grow. Here we aim at building lower and upper bounds
for W (T), which only involve one-dimensional integrals and the marginal densities of
the attributes. Maximizing a tight lower bound of W (T) directs us to the neighboring
region of an equilibrium. The idea behind the lower and upper bounds in this section
is similar to how Riemann integral is defined: Approximate the region. We do not
attempt to arrive at the limits of the lower and upper bounds. Computing the exact
values of W (T) involves too many one-dimensional integrals to be practical.

The following are simple lower and upper bounds of L (hT, g) and L (hT, b):

q∏
j=1

[
y j ≤ 1

] ⊂ L (hT, g) ⊂ Rq −
q∏

j=1

[
y j > 1

]
,

q∏
j=1

[
y j > 1

] ⊂ L (hT, b) ⊂ Rq −
q∏

j=1

[
y j ≤ 1

]
.

When we gradually add hyper-rectangles below the surface of
{

x :∏q
j=1 y j = 1

}
,

and subtract hyper-rectangles above the surface from Rq , we obtain tighter bounds of
the classification regions, and improve the lower and upper bounds of the adversary
gain. The formulas are given in Appendix A.

Remark 1 When there are several highly correlated attributes, one of them can be
selected as a representative and the rest could be excluded from the model. Otherwise
we can break the entire set of q attributes into several groups. The attributes within the
same group are correlated, while the groups themselves are not. Using such grouping,
we perform several lower dimensional searches instead of a high dimensional search.
The heuristic solution proposed next naturally follows.

6.2 A heuristic solution for the equilibrium transformation

The adversary gain is defined as W (T) = ∫L(hT,g)
g(T, x) f T

b (x) dx. Based on the
lower and upper bounds of the classification regions, we obtain lower and upper
bounds of W (T). First we define the following functions:
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G j (c, d) =
∫

I[c<y j ≤d]
(
x j
)× g j

(
Tj , x j

)× f
Tj
b, j

(
x j
)

dx j , (6.3)

Pj (c, d) =
∫

I[c<y j ≤d]
(
x j
)× f

Tj
b, j

(
x j
)

dx j , (6.4)

Q j (c, d) =
∫

I[c<y j ≤d]
(
x j
)× fg, j

(
x j
)

dx j , (6.5)

where c and d are non-negative real numbers that mark the range of y j in the indicator
function I[c<y j ≤d]

(
x j
)
.

We could have quite tight lower and upper bounds of W (T) based on Eqs. 2.1
and 2.2 Please refer to Appendix A for the formulas. By maximizing a good lower
bound of the adversary gain W (T), we obtain a heuristic solution to approximate an
equilibrium transformation. However, the lower bound W lower(T) given in Appendix
A involves an infinite number of one dimensional integrals, G j (c, d)s, Pj (c, d)s, and
Q j (c, d)s. In practice we can only include finite number of terms from the W lower(T)

formula given in Appendix A. In our experiments we observe that maximizing the one-
dimensional integral G j (0, 1) in the first term of the lower bound W lower(T) formula,(∏q

j=1 Pj (0, 1)
)

×
(∑q

j=1
G j (0,1)

Pj (0,1)

)
, leads to a transformation close to equilibrium

transformation Te. Define

T a
j = argmaxTj

G j (0, 1)=argmax
∫

I[0<y j ≤1]
(
x j
)× g j

(
Tj , x j

)× f
Tj
b, j

(
x j
)
dx j .

(6.6)

Ta =
(

T a
1 , T a

2 , . . . , T a
q

)
is an approximate equilibrium transformation. G j (0, 1) can

be considered as the one-dimensional gain generated by each attribute.
The heuristic transformation Ta is not equal to the exact equilibrium transforma-

tion. Sections 6.2.1 and 6.2.2 contain bivariate Gaussian examples that demonstrate
how well the heuristic solution approximates the exact equilibrium transformation.
The results show that heuristic transformation provides important information about
the adversary’s long term plan of actions.

6.2.1 Experiment one

In this experiment we use the following profit functions:

g1(T1, x1) = max
(

0.5 − a1 ×
∣∣∣T −1

1 (x1) − x1

∣∣∣ , 0
)

,

g2(T2, x2) = max
(

0.5 − a2 ×
∣∣∣T −1

2 (x2) − x2

∣∣∣ , 0
)

, (6.7)

g(T, x) = g1(T1, x1) + g2(T2, x2).

Transformation T is a diagonal matrix, diag(T1, T2). T(x) = Tx is a transformed
object. In both Sections, after transformation T, πb has distribution N

(
Tμb, T�bT′).
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Table 2 Initial distributions
πg

Independent N

([
3.6
2.5

]
,

[
0.92 0

0 1.22

])

Correlated N

([
3.6
2.5

]
,

[
0.92 0.6 × 0.9 × 1.2

0.6 × 0.9 × 1.2 1.22

])

πb

Independent N

([
0.8
0.6

]
,

[
0.52 0

0 0.92

])

Correlated N

([
0.8
0.6

]
,

[
0.52 0.7 × 0.5 × 0.9

0.7 × 0.5 × 0.9 0.92

])

Table 3 Exact and heuristic equilibrium performance

Independent Correlated

Transformation W (T) e(T) Transformation W (T) e(T)

(
argmax G j (0, 1)

)
Ta = (3.6, 2.3) 0.2465 0.1234 Ta = (3.6, 2.3) 0.2717 0.1360

argmax W (T) Te = (3.7, 2.1) 0.2519 0.1260 Te = (3.3, 2.2) 0.2877 0.1442

We set a1 = 0.05, a2 = 0.1, and pg = pb = 0.5. The data miner’s cost matrix is[
0 1
1 0

]
.

In Table 2 the two attributes are first set to be independent. Next we let the attri-
butes to be correlated, ρg = 0.6 and ρb = 0.7, and set the rest of the parameter values
be the same. Table 3 contains the heuristic transformations obtained by maximizing
G j (0, 1) and the equilibrium transformations. Table 3 also has the corresponding
adversary gains and Bayes errors. Ta = (3.6, 2.3), the heuristic transformation, stays
the same for both. When the two attributes are independent, the exact equilibrium
transformation is Te = (3.7, 2.1). When they become correlated, the exact equilib-
rium transformation is Te = (3.3, 2.2). When attributes are correlated, the heuristic
solution proposed by Eq. 6.6 is a little further away from the true equilibrium trans-
formation Te. In both experiments the heuristic solution is in the surrounding area
of Te. The Bayes errors of the heuristic transformations are fairly close to the exact
equilibrium Bayes errors.

6.2.2 Experiment two

In this experiment we use the same profit functions given above and set a1 =
0.03, a2 = 0.07, and pg = pb = 0.5. The data miner’s cost matrix again is

[
0 1
1 0

]
.

The means and variances for the bivariate Gaussian distributions are given in Table 4.
The Heuristic transformation is Ta = (4.1, 0.3). The corresponding adversary gain
and Bayes error are W (Ta) = 0.0673 and e (Ta) = 0.0336. The exact equilibrium
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Table 4 Initial distributions
πg πb

N

([
4.8
1

]
,

[
1.82 0

0 0.62

])
N

([
1.2
5

]
,

[
0.52 0

0 0.82

])

transformation is Te = (7, 0.3). The exact equilibrium adversary gain and Bayes error
are W (Te) = 0.1124 and e (Te) = 0.0562.

In this experiment, the heuristic solution does not perform as well as in the first
experiment. However, when we ignore the transformation penalty for the adversary
(set a1 = a2 = 0) and examine the worst case scenario, the worst case Bayes error
is 0.1113. It is much larger than the equilibrium Bayes error 0.0562. The maximum
Bayes error is produced by the transformation T = (0.3, 3.8). The worst case scenario
suggests that X2 will be heavily transformed. When considering the transformation
penalty, the heuristic solution correctly predicts that X1 will be heavily transformed.
When the transformation penalty for the adversary can be obtained or estimated, we
have information about both players in the game. Such information enables us to make
more accurate prediction about the adversary’s long term plan of action.

6.2.3 Alternative profit function

In several two dimensional experiments, we fixed parameter values, and compare the
profit function specified by Eq. 6.7 with the following one:

g(T, x) = max
(

1 − a1 ×
∣∣∣T −1

1 (x1) − x1

∣∣∣− a2 ×
∣∣∣T −1

2 (x2) − x2

∣∣∣ , 0
)

. (6.8)

We observe similar equilibrium transformations. The details are omitted here. We
believe that the profit function defined by Eq. 6.8 is more intuitive: An object can pro-
duce up to one unit profit; transformation of each attribute receives linear penalty; and
penalties together are deducted from the maximum profit available. For a single trans-
formation T and one single “bad” object x, Eqs. 6.7 and 6.8 might yield quite different
results. Equation 6.8 gives a number smaller than Eq. 6.7 for large transformations.
On the other hand, under moderate transformations, a transformed object produces
the same amount of profit based on both profit functions. Extreme transformations,
where the two functions differ, do not produce much profit in either case. It is not
likely for an extreme transformation to be an equilibrium. Since we are interested in
the classifier’s equilibrium behavior, using Eqs. 6.7 and 6.8 create similar equilibrium
states.

Under our framework Eq. 6.7 can be considered as a one-dimensional approxi-
mation to the more intuitive profit function defined by Eq. 6.8. With profit function
defined by Eq. 6.7 we do not have to employ a full scale stochastic search to discover
an equilibrium state in the game.
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6.2.4 Complexity reduction

The general solution for equilibrium strategies proposed in Sect. 3 utilizes Monte
Carlo integration and simulated annealing algorithm. It can accommodate different
types of classifiers. When we focus on the minimal cost Bayesian classifier, the heu-
ristic solution proposed in this section is computationally much less demanding.

The heuristic solution is obtained by maximizing one dimensional gains G j (0, 1)s,
which are one-dimensional integrals. We only need to estimate the one-dimension
marginal distributions of the attributes in the transformed bad class. The heuristic
solution no longer requires the knowledge of the high dimensional joint distribution
of the attributes in the transformed bad class.

Evaluating the one-dimensional gains for one transformation T at a time is still
achieved by Monte Carlo integration. However, the sample size required for an accu-
rate estimate of the one-dimensional gains is much smaller than the sample size needed
to estimate the high dimensional adversary gain W (T). 3

Maximizing G j (0, 1)s can often be achieved by a near exhaustive search over the
one-dimensional strategy space of transformations. Hence the heuristic solution does
not suffer from slow convergence as what simulated annealing experiences in high
dimensional space. The simulation studies reported in Sects. 7 and 8 use the heuristic
solution and do not employ a full scale stochastic search. Even if maximizing the
one-dimensional gains needs a stochastic search, convergence happens much faster
than searching a very high dimensional space.

We can improve the heuristic solution by using it as the starting point in a high
dimensional stochastic search. In high dimensional space, when we do not have enough
samples for an accurate estimate of W (T) by Monte Carlo integration, we can search
for a transformation that maximizes a tight lower bound of W (T) as given in Appendix
A. A tight lower bound of W (T) is close to the true function W (T). This approach
allows us to find a good approximation for Te. At the same time, because the lower
bound of W (T) only involves one-dimensional integrals, we do not encounter the sam-
ple size problem in Monte Carlo integration and avoid estimating the high dimensional
joint distribution of the transformed bad class.

7 Attribute selection for Bayesian classifier and gaussian mixture

Using the above computationally tractable approach, we examine the equilibria for
multiple attribute scenarios. In Sect. 4 we show that a classifier’s initial error rate can
be much smaller than its equilibrium error rate. Here a simple example shows that a
classifier’s equilibrium performance is not solely determined by the size of penalty,
although penalty is one important factor. For the sake of example, let the cost matrix

c =
[

0 1
1 0

]
and pg = pb = 0.5. Among the three attributes as in Table 5, we select

the one most effective at equilibrium. With only one attribute in the model, we define

3 Robert and Casella (2004) discusses how to computationally estimate the sample size required for Monte
Carlo integration to converge.
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Table 5 Three attributes’ equilibrium performance

Attribute πg πb Penalty Equilibrium Bayes Error

X1 N (1, 1) N (3, 1) a = 1 0.16

X2 N (1, 1) N (3.5, 1) a = 0.45 0.13

X3 N (1, 1) N (4, 1) a = 0 0.23

the profit function as in Eq. 4.1. Let k = 1. Equilibrium transformations are obtained
by Eq. 4.2. Table 5 shows the Bayesian classifier’s equilibrium performance for each
of the three attributes in the model.

Without transformation and only based on the initial distributions, a Bayesian clas-
sifier using the third attribute X3 is the most successful. Focusing on penalties, X1
receives the heaviest penalty. However, the second attribute X2 is the most effective
at the equilibrium. This example indicates that an attribute’s long term success is not
entirely determined by its initial success, or the size of penalty. All factors interact
with each other and produce X2 as the winner.

With q attributes, there are 2q − 1 subsets. We use two information criteria to
evaluate the long-term effectiveness of every subset:

1. Equilibrium Bayes error e (Te).
2. Equilibrium expected misclassification cost C (Te, hTe ).

Note that when the cost matrix c =
[

0 1
1 0

]
, the two criteria are equal.

With enough computation power, one can employ a forward or backward attri-
bute selection algorithm, choosing the next subset with the smallest exact equilibrium
Bayes error or expected misclassification cost. However, to search for an equilibrium
in every step is very time-consuming. Instead we examine the performance of different
subsets based on the heuristic solution.

In this simulation we have 5 attributes in the model, and examine all the 31 subsets
of these five attributes. We assume that the five attributes are independent for both

classes. Let c =
[

0 1
1 0

]
, pg = 0.7, and pb = 0.3. When there are d attributes in the

model (1 ≤ d ≤ q), the profit function is defined as:

g j
(
Tj , x j

) = max
(

1/d − a j × |T −1
j

(
x j
)− x j |, 0

)
,

g(T, x) =
d∑

j=1

g j
(
Tj , x j

)
.

Hence for all the different subsets of attributes, a “bad” object produces one unit
profit when it passes the classifier without transformation. The profit function can be
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Table 6 Initial distributions for five attributes

πg πb a j πg πb a j

X1 N
(

1.8, 0.62
)

N
(

0.5, 1.62
)

0.02 X2 N
(

3.2, 1.12
)

N
(

1, 0.82
)

0.04

X3 N
(

3.8, 1.82
)

N
(

1.5, 22
)

0.06 X4 N
(

6, 2.42
)

N
(

2.5, 1.22
)

0.08

X5 N
(

5.5, 0.82
)

N
(

3.5, 0.42
)

0.10

considered as one-dimensional approximation to the following function:

g∗(T, x) = max

⎛
⎝1 −

d∑
j=1

a j ×
∣∣∣T −1

j

(
x j
)− x j

∣∣∣ , 0

⎞
⎠ .

The distributions for the “good” and “bad” classes and the penalties for transform-
ing each attribute are given in Table 6. As in Sect. 6.2, transformation T is a diagonal
matrix, diag(T1, . . . , Td). A transformed object is: T(x) = Tx. The transformed “bad”
class has distribution N

(
Tμb, T�bT′). In Table 6 we set the parameter values such

that the simulations can demonstrate how the heuristic performs in very different sce-
narios. The parameters are set so that some distributions have large variances while
the rest have small variances. For some attributes the initial distributions are well sep-
arated, while they overlap a lot for some other attributes. In addition we gradually
increase the penalty too.

We obtain the heuristic transformations for every subset by maximizing the one-
dimensional gains, defined by Eq. 6.6. We calculate the Bayes error of the heuristic
transformation e (Ta).

Table 7 shows the simulation results. It contains the heuristic transformation Ta ,
the initial adversary gain W (I), the initial Bayes error e(I), the heuristic adversary
gain W (Ta), and the heuristic Bayes error e (Ta) for each subset. Experiment results
indicate that choosing attributes based on the initial Bayes error is not a good choice.
For example, among all the subsets with two attributes, (X4, X5) has the smallest
initial Bayes error and one of the worst Bayes error at equilibrium (i.e., high e (Ta)

value). Similar phenomenon is observed for subsets with more attributes.
It is computationally infeasible to obtain the exact equilibrium Bayes errors and the

exact equilibrium expected misclassification costs, the best long-term effectiveness
measures, for every subset of attributes. The heuristic values are easy to compute and
useful alternative effectiveness measures.

As in a static environment, monitoring more attributes improves the classifier per-
formance under the heuristic transformation in this simulation. X1 is an interesting
attribute. It receives the smallest penalty. Yet transformation on X1 does not increase
the adversary gain much, due to the large variance of the “bad” class. All the success-
ful subsets contain X1. Although X5 receives the heaviest penalty 0.1, it alone is not
more effective than the other four combined, e

(
T a

5

) = 0.3. X5 has a small variance
in the “bad” class. For Gaussian attributes, variance appears to be a more important
factor than penalty. Simply adding more attributes does not necessarily improve the
equilibrium performance much. For example (X1, X5) and (X1, X4, X5) have very

123



322 M. Kantarcıoğlu et al.

Table 7 Heuristic equilibrium performance for 31 subsets

Index Attributes Heuristic Ta W (I) e(I) W
(
Ta) e

(
Ta)

1 1 1.02 0.4268 0.1503 0.4301 0.1516

2 2 2.6 0.1907 0.1177 0.6346 0.2368

3 3 1.4 0.5381 0.2187 0.6335 0.2359

4 4 2 0.1953 0.1649 0.7656 0.2986

5 5 1.5 0.0538 0.0482 0.8249 0.3000

6 1, 2 1.2, 2.5 0.1409 0.0767 0.3138 0.1245

7 1, 3 1, 1.5 0.3088 0.1212 0.3182 0.1255

8 1, 4 1, 2.1 0.2302 0.1080 0.3263 0.1496

9 1, 5 1, 1.5 0.0460 0.0358 0.3390 0.1455

10 2, 3 2.4, 1.4 0.1517 0.0916 0.4529 0.1949

11 2, 4 2.5, 2.2 0.0818 0.0595 0.4622 0.2369

12 2, 5 2.5, 1.5 0.0265 0.0202 0.4973 0.2343

13 3, 4 1.4, 2.2 0.1964 0.1215 0.4590 0.2336

14 3, 5 1.5, 1.5 0.0491 0.0393 0.4945 0.2326

15 4, 5 2.2, 1.5 0.0259 0.0234 0.5468 0.2974

16 1, 2, 3 1.2, 2.3, 1.4 0.1109 0.0589 0.2429 0.1067

17 1, 2, 4 1, 2.3, 2.2 0.0623 0.0407 0.2386 0.1266

18 1, 2, 5 1, 2.4, 1.6 0.0193 0.0150 0.2441 0.1268

19 1, 3, 4 1.1, 1.4, 2.2 0.1505 0.0765 0.2380 0.1245

20 1, 3, 5 1, 1.3, 1.6 0.0399 0.0279 0.2480 0.1246

21 1, 4, 5 1, 2.1, 1.6 0.0215 0.0175 0.2363 0.1482

22 2, 3, 4 2.5, 1.4, 2.2 0.0673 0.0464 0.3218 0.1921

23 2, 3, 5 2.4, 1.4, 1.6 0.0218 0.0166 0.3383 0.1933

24 2, 4, 5 2.5, 2.2, 1.6 0.0124 0.0103 0.3211 0.2345

25 3, 4, 5 1.4, 2.2, 1.6 0.0235 0.0191 0.3219 0.2307

26 1, 2, 3, 4 1, 2.4, 1.2, 1.3 0.0521 0.0329 0.1654 0.0879

27 1, 2, 3, 5 1.2, 2.2, 1.3, 1.6 0.0170 0.0115 0.1787 0.1041

28 1, 2, 4, 5 1, 2.2, 1.2, 1.6 0.0091 0.0074 0.1570 0.0977

29 1, 3, 4, 5 1, 1.2, 1.2, 1.6 0.0187 0.0138 0.1549 0.0953

30 2, 3, 4, 5 2.5, 1.2, 1.3, 1.6 0.0105 0.0085 0.1925 0.1459

31 1, 2, 3, 4, 5 1, 2.3, 1.3, 1.2, 1.3 0.0082 0.0058 0.0865 0.0608

similar heuristic Bayes error. We notice that using three attributes (X1, X2, X3) is an
effective and economical choice.

This simulation study confirms that a classifier’s initial success has little impact on
its long term performance. A set of attributes’ long term success or failure depends on
many factors: their initial distributions, penalties for transformation, the profit function
etc. The long-term effectiveness measures defined above consider all the factors under
a proper model and recommend the best sets of attributes. If none of the attributes
or the combinations of attributes can deliver satisfactory long term performance, data

123



Classifier evaluation and attribute selection 323

miner must aggressively change the rules of the game (e.g., identify entirely new ways
of authenticating malicious objects) in order to win.

8 Attribute selection for Bayesian classifier and Bernoulli variables

The following simulation study mimics the spam filtering environment. Because a
single binary attribute in a spam email can be modified without changing the rest,
we simplify the matter and make the Bernoulli attributes themselves independent.
We simulate 25 independent Bernoulli random variables, using the probability func-
tions and the transformation defined in Sect. 5.2. In the “good” class πg let

X j =
{

1 with probability rg j

0 with probability 1 − rg j

In the “bad” class πb the initial probabilities prior to transformation are

T −1
j

(
X j
) =
{

1 with probability rbj

0 with probability 1 − rbj

Transformation is a probability Tj for πb:

X j =
{

1 with probability rbj × (1 − Tj
)

0 with probability 1 − rbj + rbj × Tj

We modify the profit function defined by Eqs. 5.1 and 5.2. In the profit function
each Bernoulli attribute can have different initial profit and penalty.

g j
(
Tj , X j

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k
a j(Tj)
j if T −1

j

(
X j
) = 1 and X j = 0

k
1+a j(T j)

2
j if T −1

j

(
X j
) = 1 and X j = 1

k j if T −1
j

(
X j
) = X j = 0

Later in the simulation we let the initial profit for every attribute equal to 3, i.e.,
k j = 3,∀ j , and allow them to have different penalty a j .

a j
(
Tj
) =
{

a j × (1 − Tj
)

if a j ≥ 0
a j × Tj if a j < 0

The total profit for a subset with d attributes is defined as:

g(T, X1, . . . , Xd) =
d∑
1

g j
(
Tj , X j

)
.
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The Naïve Bayes classifier using d attributes has the following classification region
L (hT, g) where objects are classified as “good”:

{
X:
(

(c(g, b) − c(b, b))pb

(c(b, g) − c(g, g))pg

)
×
(

d∏
1

(
rbj
(
1 − Tj

))X j
(
1 − rbj + rbj Tj

)1−X j

(
rg j
)X j
(
1 − rg j

)1−X j

)
≤1

}
.

When we examine the above classification region carefully, we discover an inter-
esting phenomenon. For every subset there exists a transformation that makes the two
classes indistinguishable. Then based on the parameter values of the Naïve Bayes
classifier, it either passes all objects or blocks all objects: If ∀ j , rbj

(
1 − Tj

) = rg j ,
then for all possible outcomes produced by Bernoulli attributes, we have

d∏
1

(
rbj
(
1 − Tj

))X j
(
1 − rbj + rbj Tj

)1−X j

(
rg j
)X j
(
1 − rg j

)1−X j
= 1.

For transformation T∗ = (Tj
)

such that ∀ j , Tj = 1 − rg j
rbj

, the classification rule is to
either pass all objects or block all objects, regardless of how many attributes are used
to construct the Naïve Bayes classifier. The only factor that determines which extreme
classification rule is triggered by T∗ is the constant term (c(g,b)−c(b,b))×pb

(c(b,g)−c(g,g))×pg
.

When (c(g,b)−c(b,b))×pb
(c(b,g)−c(g,g))×pg

≤ 1, for every subset there exists a transformation which
forces the classifier to pass all objects. Under such an extreme classification rule, the
Bayes error rate is pb. Even we consider the impact of penalty for transformation, we
expect most subsets to have equilibrium Bayes error pb regardless of the number of
attributes. Depending on the attributes in a subset and their initial probabilities rg j and
rbj , some subsets experience heavier transformation to trigger the pass-all classifica-
tion rule. That does not affect the equilibrium Bayes error. All subsets are equally bad
in the long run. There is no attribute selection issue.

When (c(g,b)−c(b,b))×pb
(c(b,g)−c(g,g))×pg

> 1, for every subset there exists a transformation which
forces the classifier to block all objects. Again depending on the attributes and their
initial probabilities rg j and rbj , some subsets experience heavier transformation to
trigger the block-all classification rule. From the simulation results in Sect. 5.2, we
expect an equilibrium to surface before the block-all classification rule is triggered.
The exact location of equilibrium depends on penalties. To prevent equilibrium Bayes
error becoming pb for all 2q − 1 subsets of attributes, the data miner has to increase
its tolerance for misclassifying a “good” objects, reducing the value of c(b, g). Next
we choose a set of parameters such that (c(g,b)−c(b,b))×pb

(c(b,g)−c(g,g))×pg
> 1.

8.1 Experiment

We have c(b, g)/c(g, b) = 3, c(g, g) = c(b, b) = 0, and pb = 0.8 and pg = 0.2.
The “bad” class πb dominates the overall population and misclassifying a “good”
object costs more. With these parameters, there is no transformation to trigger the
pass-all classification rule. There is at least one transformation for every subset to
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Table 8 Five levels for the
parameters

rb 0.75 0.80 0.85 0.90 0.99

rg 0.01 0.05 0.10 0.15 0.20

a −4.0 −3.0 −2.0 −1.0 1.0

Table 9 Initial parameter values for 25 Bernoulli attributes

X1 X2 X3 X4 X5 X6 X7 X8 X9

rb 0.75 0.80 0.85 0.90 0.99 0.75 0.80 0.85 0.90

rg 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.05

a −4.0 −3.0 −2.0 −1.0 1.0 −3.0 −2.0 −1.0 1.0

X10 X11 X12 X13 X14 X15 X16 X17

rb 0.99 0.75 0.80 0.85 0.90 0.99 0.75 0.80

rg 0.05 0.10 0.10 0.10 0.10 0.10 0.15 0.15

a −4.0 −2.0 −1.0 1.0 −4.0 −3.0 −1.0 1.0

X18 X19 X20 X21 X22 X23 X24 X25

rb 0.85 0.90 0.99 0.75 0.80 0.85 0.90 0.99

rg 0.15 0.15 0.15 0.20 0.20 0.20 0.20 0.20

a −4.0 −3.0 −2.0 1.0 −4.0 −3.0 −2.0 −1.0

force the Naïve Bayes classifier to block all objects. Each of the key parameters has 5
levels, as specified by Table 8. They form the 25 attribute parameters as specified by
Table 9.

Given 25 attributes, there are 225 − 1 = 33554431 possible subsets that can be
used for classification. We focus on subsets of 3 attributes, 2300 subsets, and examine
how well the heuristic solution performs with Bernoulli variables. In this setup the
maximum profit generated by a “bad” object is 9 if it passes the classifier without
transformation. The heuristic transformations are obtained by Eq. 6.6.

Out of all 2300 subsets containing 3 attributes, the best 20 subsets have heuristic
Bayes errors ranging from 0.0509 to 0.0829. The best 50 subsets have heuristic Bayes
errors ranging from 0.0509 to 0.0958. On the other hand, the worst heuristic Bayes
error can reach 0.5068.

The best 10 subsets with the heuristic transformations Ta and the heuristic Bayes
errors e (Ta) are listed in Table 10. The initial probabilities for the best subsets pro-
vide good separation. These subsets need transformations T 
 0.70 to trigger the
block-all classification rule. Large penalties force the adversary to stop well before
the transformations enter the block-all region. They produce small Bayes errors at
equilibrium.

The worst 10 subsets with the heuristic transformations Ta and the heuristic Bayes
errors e (Ta) are listed in Table 11. The initial probabilities for the worst subsets also
provide good separation. Unfortunately good initial separation allows much space for
transformation. The heuristic transformations for the worst subsets are very close to
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Table 10 The ten best subsets

1 2 3 4

Xs 1, 2, 10 1, 3, 10 1, 6, 10 2, 6, 10

Ta (0.21, 0.30, 0.25) (0.21, 0.45, 0.25) (0.21, 0.27, 0.25) (0.30, 0.27, 0.25)

e
(
Ta) 0.0509 0.0582 0.0592 0.0620

5 6 7

Xs 2, 3, 10 2, 10, 14 1, 7, 10

Ta (0.30, 0.45, 0.25) (0.30, 0.25, 0.29) (0.21, 0.44, 0.25)

e
(
Ta) 0.0624 0.0631 0.0678

8 9 10

Xs 3, 10, 14 2, 7, 10 3, 6, 10

Ta (0.45, 0.25, 0.29) (0.30, 0.44, 0.25) (0.45, 0.27, 0.25)

e
(
Ta) 0.0697 0.0707 0.0714

Table 11 The ten worst subsets

2291 2292 2293 2294

Xs 8, 9, 16 5, 9, 17 8, 9, 12 5, 9, 16

Ta (0.80, 0.84, 0.69) (0.85, 0.84, 0.71) (0.80, 0.84, 0.74) (0.85, 0.84, 0.69)

e
(
Ta) 0.4842 0.4861 0.4871 0.4882

2295 2296 2297

Xs 8, 9, 13 4, 8, 9 5, 9, 12

Ta (0.80, 0.84, 0.76) (0.81, 0.80, 0.84) (0.85, 0.84, 0.74)

e
(
Ta) 0.4893 0.4920 0.4953

2298 2299 2300

Xs 5, 9, 13 4, 5, 9 5, 8, 9

Ta (0.85, 0.84, 0.76) (0.81, 0.85, 0.84) (0.85, 0.80, 0.84)

e
(
Ta) 0.4956 0.4977 0.5068

trigger the block-all classification rule. When penalties are not large enough to dis-
courage the adversary, the adversary chooses to transform the attributes heavily but
not to trigger the block-all rule.

Using the heuristic equilibrium transformation and the heuristic Bayes error, for-
ward/backward selection algorithms can be employed to search for a subset of attri-
butes with good performance. Instead of performing a stochastic search at every step
in forward/backward selection algorithms, we evaluate one heuristic transformation.
The total number of heuristic transformations involved in forward/backward selection
algorithms is O

(
q2
)
. It is quite affordable.
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9 Case study

For our experiments, we use a data set that was retrieved in February 2010 from
an online lending company’s website (www.lendingclub.com). The company offers
qualified applicants small loans ranging from $1000 to $25,000. Since people can lie
about various aspects of their application to get loans, this case can be considered as an
adversarial learning scenario. Furthermore, according to the company’s prospectus, it
initially only reliably verifies information obtained from the applicants’ credit reports.
Later on, the company may ask applicants to provide employment information at
random but there is no guarantee such information can be received. Some of the infor-
mation such as home ownership is never verified. This verification process indicates
that from an adversarial classification point of view, different attributes receive dif-
ferent penalties for transformation. Unverified attributes receive zero transformation
penalty for the adversary.

Based on an attribute called “Monthly payment status”, we are able to identify
loans that the borrowers fail to make payments on time, and loans that receive regular
monthly payments or have been fully paid off. For our experiments, we do not use
the text and date attributes, such as loan description, loan title, screen name of the
applicant, application date etc. We use the following attributes from the data set.

1. X1—Amount requested
2. X2—Loan purpose
3. X3—Debt-to-income ratio
4. X4—Home ownership (any, none, rent, own, mortgage)
5. X5—Monthly income
6. X6—FICO range
7. X7—Open credit lines
8. X8—Total credit lines
9. X9—Revolving credit balance

10. X10—Revolving line utilization
11. X11—Inquiries in the last 6 months
12. X12—Accounts now delinquent
13. X13—Delinquent amount
14. X14—Delinquencies in last 2 years
15. X15—Months since last delinquency

The instances in the data set originally are classified into the following categories:
(1) “Removed”; (2) “Loan is being issued”; (3) “Late (31–120 days)”; (4) “Late (16–
30 days)”; (5) “Issued”; (6) “In review”; (7) “In grace period”; (8) “In funding”; (9)
“Fully paid”; (10) “Expired”; (11) “Default”; (12) “Current”; (13) “Charged Off”;
(14) “New”.

We perform data cleaning and pre-processing to create good and bad classes from
the original data set. First we remove all the instances that are labeled as “New”, “Loan
is being issued”, “Issued”, “In review”, “In funding”, “In grace period”, “Late (16–30
days)”, and “Expired”. We remove instances that belong to those categories to ensure
that we have unambiguous information about whether the applicants make regular
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payments or not. In the original data set the instances from those categories together
are less than 10% of the total.

The loans that have been fully paid off and the ones that receive regular payments
form the “good” class. The loans that have been charged off or experience late pay-
ments for longer length of time (i.e., being late for more than 30 days) form part of
the “bad” class.

A large number of the instances in the original data set belong to the “Removed”
category, where the loan applications are removed due to variety of reasons: Appli-
cants refuse to provide employment information; or applicants fail to fill up requisite
forms etc. It is not clear whether we can directly consider the “Removed” category as
part of the “bad” class, since some of the removed instances actually can be from the
“good” class but are removed due to technical reasons. On the other hand, deleting
this entire category from the data set would significantly reduce the number of “bad”
class instances. Instead of deleting the whole category, we modify some attributes of
the instances from the “Removed” category to form the remaining portion of the “bad”
class. Basically for each instance in “Removed” category, we perform the following
modifications.

1. The FICO range (X6) is decreased by three intervals: If the original FICO range
is “780+” for an instance, it is replaced by “713–679”.

2. Debt-to-income ratio (X3) and revolving line utilization (X10) are multiplied by
3.

3. Monthly income (X5) is reduced to 1/3 of its original value.

After omitting the instances with missing values and performing the above pre-
processing steps, we are left with 5850 instances. In the experiment we discretize
continuous numeric attributes using ten equi-width buckets: A discretized attribute
has 10 interval values where 10% of the overall population (“good” and “bad” com-
bined) falls into each interval. Then we have the initial data set prior to transformation
for the experiment.

We set πg = πb = 0.5 since the proportions of the two classes are roughly equal.
We set c(g, b) = c(b, g) and c(g, g) = c(b, b) = 0. The company charges inter-
est rate as high as 21%. The interest earned by the company from a good loan over
three year period equals to a significant portion of the principal. Counting the partial
payments received from a “bad” loan and the lost interest from a “good” loan, we
assume that the cost of rejecting a loan application that the applicant can make regular
payments equals to the cost of offering a bad loan that will not be fully paid back. We
use Eq. 6.6 to search for the heuristic equilibrium transformation. Under the above
setting, the classification region in Eq. 6.6 is equivalent to that of a one dimensional
Bayesian classifier. Furthermore, Eq. 6.6 can be re-written as a simple optimization
problem for discrete attributes.

Let pi = Pr [X = wi |πb] and qi = Pr [X = wi |πg] for an attribute with m differ-
ent discrete values (e.g., ordered intervals in the experiment). Let fi j be the proportion
of attribute X that is transformed from interval wi to interval w j by the adversary.
Let di j be the penalty of transforming attribute X from wi to w j by the adversary.
Let yi equal to Pr [T (X) = wi |πb]. It is the probability after the adversary performs
transformation. In one dimensional case, we know that an instance will be classified as

123



Classifier evaluation and attribute selection 329

“good” if after transformation yi is less than qi . We assume that the adversary earns an
expected profit ui when a transformed “bad” object is classified as “good”. Using the
above notations, we can rewrite our one dimensional heuristic method as the following
optimization problem.

max

⎡
⎣−
⎛
⎝ m∑

i=1

m∑
j=1

fi j × di j

⎞
⎠+

(
m∑

i=1

I{yi <qi } × yi × ui

)⎤
⎦

subject to

fi j ≥ 0 i = 1, . . . , m, j = 1, . . . , m (9.1)
m∑

j=1

fi j = pi i = 1, . . . , m (9.2)

m∑
i=1

fi j = y j j = 1, . . . , m (9.3)

m∑
j=1

y j = 1 (9.4)

The above optimization formulation states that we need to maximize the objec-
tive function that considers both the profit and transformation penalties under various
constraints.

Using the above heuristic one dimensional estimates, we conduct an experiment.
The above optimization problem is solved using Matlab’s optimization toolbox for
each dimension. Depending on the number of constraints, running one dimensional
heuristic requires three to five minutes on our server with two Intel(R) Xeon(R) quad-
core 3.16 GHz cpus. After the heuristic solution is obtained for each dimension, we
modify the bad instances using the transformation returned by our one dimensional
heuristic. Later on, a Naïve Bayes classifier is built on the transformed data set using
Weka toolbox. Each trial is repeated 10 times using 10 fold cross validation. Below
we report the average classification accuracy for different scenarios.

From the initial data set, we obtain classification accuracy of 89.95%. Next using
our heuristic technique, we explore the worst case scenario where the adversary can
transform the bad class without any penalty, di, j = 0∀i, j . In all of the one dimen-
sional optimizations, we let all ui equal to the average loan amount requested $8978.8.
In the worst case scenario, the heuristic transformation returns an equilibrium perfor-
mance accuracy of 61.52%. Finally, we examine the case where there is a significant
penalty for transforming FICO range, revolving credit balance, revolving line utili-
zation, accounts now delinquent, and delinquent amount. We assume that improving
each attribute by one level, such as increasing FICO range from “679–713” to “714–
740” or reducing revolving line utilization by one level, would cost $500. Under this
penalty, we find a heuristic equilibrium transformation that returns 72.28% accuracy.
We would like to stress that we run additional experiments with different penalties,

123



330 M. Kantarcıoğlu et al.

Table 12 Classification
accuracy

Experiment type Accuracy

Initial data set prior to transformation 89.95%

Worst case scenario 61.25%

Penalized transformation scenario 72.28%

Attribute selection scenario 70.92%

$600, $300, and $400, and still obtain results close to 72.28%. These results indicate
that our heuristic solution is not sensitive to mild variations in penalty values.

In addition, we explore the feasibility of using our one dimensional heuristic for
attribute selection. Basically, we rank all attributes based on their one dimensional
classification accuracy after transformation. Using this rank, we choose the top half of
the attributes and build a Naïve Bayes model on those attributes. As shown in Table 12,
just using half of the available attributes, we can reach 70.92% accuracy. This indicates
that our one dimentional heuristic could be used for efficient attribute selection.

The above results indicate that the online lending company does not have to prepare
for the worst case scenario that may force the company to increase the interest rate for
every loan and lose potential good borrowers. Due to heavy penalty, the adversary can
not afford to transform the attributes to the extreme. The penalties for transformation
can be estimated more accurately if a financial model is available. Furthermore, in the
heuristic transformation, the probabilities fi j of moving from one level to another, can
help the lender to assess the risk of an application.

10 Conclusion

Many classification problems operate in a setting with active adversaries: while one
party tries to identify the members of a particular class, the other tries to reduce the
effectiveness of the classifier. Although this may seem like a never-ending cycle, it
is possible to reach a steady-state where the actions of both parties stabilize. The
game has an equilibrium because both parties are facing costs: costs associated with
misclassification on the one hand, and for defeating the classifier on the other. By
incorporating such costs in modeling, we can determine where such an equilibrium
could be reached, and whether it is acceptable to the data miner.

Although we propose simulated annealing to find subgame perfect equilibrium in
this paper, other stochastic search techniques can also be used. We consider the sto-
chastic hill climbing technique as an alternative. With stochastic hill climbing, a new
point is chosen only if it improves the current result. It can quickly find a good local
optimal solution. The heuristic solution can be used as the initial start point in stochas-
tic hill climbing. It will return an improved transformation much faster than simulated
annealing.

In this article we have done a case study, and experiments on a combination of
Bayesian classifier, Gaussian mixture and Bernoulli distributions, and different types
of penalty for transformations. We emphasize that our formulation applies to many
real life scenarios, such as intrusion detection and profiling for homeland security.
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Wherever there are two parties involved, and one party tries to avoid detection by
modifying its current strategy to mimic the other party, our formulation can be applied
to the scenario.

In summary, game theory is a valuable tool for understanding the adversarial envi-
ronments. It gives us an idea about how effective we can expect a classifier to be
in the long term. It also provides important insight that enables us to build better
classifiers/filters.
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Appendix A: Lower and upper bounds of the adversary gain

We first present tight bounds of the classification regions. Write

RB0 =
q∏

j=1

[
y j ≤ 1

]
.

RB0 is a subset of L (hT, g) =
{∏q

j=1 y j ≤ 1
}

and a hyper-rectangle with all y j s not

greater than 1. Write

RB1 =
q⋃

j=1

⎧⎨
⎩

∞⋃
n=1

⎧⎨
⎩
[
n < y j ≤ n + 1

]×∏
k �= j

[
yk ≤

(
1

n + 1

) 1
q−1
]⎫⎬
⎭
⎫⎬
⎭ .

Again RB1 is a subset of L (hT, g). RB1 is also the union of hyper-rectangles, where
each one has exactly one y j great than 1. RB0 ∩ RB1 = ∅. Write

RB2 =
q⋃

j1=1

q⋃
j2= j1+1

⎧⎨
⎩

∞⋃
n1=1

∞⋃
n2=1

{
2∏

�=1

[
n� < y j� ≤ n� + 1

]

×
∏

k �= j�,�=1,2

⎡
⎣yk ≤

(
1∏2

�=1(n� + 1)

) 1
q−2
⎤
⎦
⎫⎬
⎭
⎫⎬
⎭ .

RB2 is the union of hyper-rectangles, where each one has exactly two y j s great than

1. We continue to add more hyper-rectangles below the surface of
{∏q

j=1 y j = 1
}

in

this fashion up to RBq−1. Write
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RBq−1

=
q⋃

j1=1

q⋃
j2= j1+1

. . .

q⋃
jq−1= jq−2+1

⎧⎨
⎩

∞⋃
n1=1

. . .

∞⋃
nq−1=1

⎧⎨
⎩

q−1∏
�=1

[
n� < y j� ≤ n� + 1

]

×
[

yk ≤ 1∏q−1
�=1 (n� + 1)

]

k �= j�

⎫⎬
⎭
⎫⎬
⎭ .

Notice ∀i �= j, RBi ∩ RB j = ∅. And
⋃q−1

0 RB j offers a tighter lower bound than the
one defined by Eq. 6.3. Similarly we construct an improved upper bound for L (hT, g).
Write RA j , j = 0, . . . , q − 1, as follows:

RA0 =
q∏

j=1

[
y j > 1

]
,

RA1 =
q⋃

j=1

⎧⎨
⎩

∞⋃
n=1

⎧⎨
⎩
[

1

n + 1
< y j ≤ 1

n

]
×
∏
k �= j

[
yk > (n + 1)

1
q−1

]⎫⎬
⎭
⎫⎬
⎭ ,

. . . . . . ,

RAq−1 =
q⋃

j1=1

q⋃
j2= j1+1

. . .

q⋃
jq−1= jq−2+1

⎧⎨
⎩

∞⋃
n1=1

. . .

∞⋃
nq−1=1

⎧⎨
⎩

q−1∏
�=1

[
1

n� + 1
< y j� ≤ 1

n�

]

×
⎡
⎣yk >

q−1∏
�=1

(n� + 1)

⎤
⎦

k �= j�

⎫⎬
⎭
⎫⎬
⎭ .

∀i �= j, RAi ∩ RA j = ∅. Every hyper-rectangle in RAk has exactly k y j s smaller
than 1. We now have improved lower and upper bounds for the classification regions:

q−1⋃
0

RB j ⊂ L (hT, g) ⊂ Rq −
q−1⋃

0

RA j (A.1)

q−1⋃
0

RA j ⊂ L (hT, b) ⊂ Rq −
q−1⋃

0

RB j (A.2)

Based on the lower and upper bounds of the classification regions in Eqs. A.1 and
A.2, we have the lower and upper bounds of the adversary gain. A lower bound of the
adversary gain is:

W lower(T)

=
⎛
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⎠
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An upper bound of the adversary gain is:

W upper(T)
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