
Sparse Bayesian Adversarial Learning Using Relevance Vector Machine Ensembles

Yan Zhou, Murat Kantarcioglu, and Bhavani Thuraisingham

Department of Computer Science
University of Texas at Dallas

Richardson, TX 75080
{yan.zhou2, muratk, bhavani.thuraisingham}@utdallas.edu

Abstract—Data mining tasks are made more complicated
when adversaries attack by modifying malicious data to evade
detection. The main challenge lies in finding a robust learning
model that is insensitive to unpredictable malicious data
distribution. In this paper, we present a sparse relevance vector
machine ensemble for adversarial learning. The novelty of our
work is the use of individualized kernel parameters to model
potential adversarial attacks during model training. We allow
the kernel parameters to drift in the direction that minimizes
the likelihood of the positive data. This step is interleaved with
learning the weights and the weight priors of a relevance vector
machine. Our empirical results demonstrate that an ensemble
of such relevance vector machine models is more robust to
adversarial attacks.

Keywords-adversarial learning; spare Bayesian learning; rel-
evance vector machine; kernel parameter learning.

I. INTRODUCTION

Existing research in adversarial learning varies in the

types of constraints considered in the problem definition.

The assumption of unconstrained adversaries is impractical

since arbitrary modification to data and its class membership

can result in a worst-case error rate of 100% [1], [2].

Therefore, the majority of the recent research focuses on

constrained adversaries. Under the constrained-adversary

assumption, major research results can be further divided

between game-theoretic solutions and non-game theoretic

solutions. For practitioners, the difficulty lies in choosing

the most appropriate method for problems at hand. So-

lutions developed in the game-theoretic framework almost

always assume a rational game. In addition, each player is

assumed to have a certain amount of knowledge about the

opponent. Similarly, non-game theoretic methods often make

assumptions on the opponent’s knowledge, the distribution

of corrupted data, and available computing resources. In

practice, adversaries are seldom optimal and the knowledge

and the resources they possess are hard to assess.

For classification problems, the common assumption is

that data are independently and identically distributed. This

assumption is easily violated when there is an active adver-

sary who modifies data to influence the prediction. When

data is constantly modified in an unpredictable way, training

data would never be sufficient to induce an accurate clas-

sifier. On the positive side, at training time we can explore

the feature space and find the most effective direction for the

adversary to move data in the feature space to influence the

classifier. Once we find such a direction, we can improve the

classifier by countering these potential moves. The learning

model we choose to implement this strategy is the relevance
vector machine.

Similar to the support vector machine method, the rele-

vance vector machine (RVM) [3] is a sparse linearly param-

eterized model. It is built on a Bayesian framework of the

sparse model. Unlike the support vector machine in which

a penalty term is introduced to avoid over-fitting the model

parameters, the relevance vector machine model introduces

a prior over the weights in the form of a set of hyperparam-

eters, one associated independently with each weight. Very

large values of the hyperparameters (corresponding to zero-

weights) imply irrelevant inputs. Training data points asso-

ciated with the remaining non-zero weights are referred to

as relevance vectors. The relevance vector machine typically

use much fewer kernel functions compared to the SVM.
In this paper, we propose a sparse relevance vector ma-

chine ensemble for adversarial learning. The basic idea of

this approach is to learn an individual kernel parameter ηi
for each dimension di in the input space. The parameters are

iteratively estimated from the data along with the weights

and the hyperparameters associated with the weights. The

kernel parameters are updated in each iteration so that

the likelihood of the positive (malicious) data points are

minimized. This essentially models adversarial attack as if

the adversary were granted access to the internal states of the

learning algorithm. Instead of using fixed kernel parameters,

we search for kernel parameters that simulate worst-case

attacks while the learning algorithm is updating the weights

and the weight priors of a relevance vector machine. We

learn M such models and combine them to form the final

hypothesis. Our main contributions are:

• extending the sparse Bayesian relevance vector machine

model to counter adversarial attacks;

• developing a kernel parameter fitting technique to

model adversarial attacks within the RVM framework.

The use of individualized kernel parameters has been shown

beneficial to kernel-based learning [3]; however, this is the

first time it is applied to adversarial learning.
The rest of the paper is organized as follows. Section II

presents the related work in adversarial learning. Section III

2012 IEEE 12th International Conference on Data Mining

1550-4786 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICDM.2012.58

769

2012 IEEE 12th International Conference on Data Mining

1550-4786 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICDM.2012.58

1206

discusses the relevance vector machine model. Section IV

presents the gradient-based method for modeling adversarial

attacks and Section V presents experimental results on both

artificial and real data sets. Section VI concludes our work

and discusses future directions.

II. RELATED WORK

There are several theoretical conclusions regarding bounds

on malicious noise rate and learning accuracy. Kearns and

Li [1] prove theoretical upper bounds on tolerable malicious

error rates in the sample. They assume the adversary can

generate malicious errors with an unknown and unpre-

dictable nature. Bshouty et al. [4] introduce a variant of the

PAC learning model for learning in the presence of nasty

noise. They prove that when the sample noise rate is η no

learning algorithm can learn non-trivial concept classes with

accuracy less than 2η. Auer and Cesa-Bianchi [2] present

an online learning model for learning with corrupted data.

They extend the “Closure Algorithm” and prove a worst case

mistake bound for learning an arbitrary intersection-closed

concept class. Lowed and Meek [5] present an algorithm

that finds the instance with minimal adversarial cost. They

refer to this algorithm as an adversarial classifier reverse

engineering (ACRE) algorithm.

Adversarial learning problems have been extensively stud-

ied in the framework of game theory. Dalvi et al. [6]

consider the learning problem as a game between two cost-

sensitive opponents. The adversary always plays optimal

strategies. Given a cost function, their algorithm predicts the

class that maximizes the conditional utility. Kantarcioglu et

al. [7] present a simulated annealing and genetic algorithm

to search for a Nash equilibrium for choosing an optimal

set of attributes. They assume the two players know each

other’s payoff function. Similar work with improvement on

how Nash strategies are played has also been proposed [8],

[9]. Brückner and Scheffer [10] present an optimal game

by assuming the adversaries always behave rationally. Their

algorithm does not require a unique equilibrium.

In a slightly different research avenue, robust learning

techniques have been proposed for handling classification-

time noise [11]–[14]. Globerson and Roweis [15] consider

classification-time feature deletion. They present an SVM

algorithm that constructs an optimal classifier under a pre-

defined constraint. El Ghaoui et al [16] present a minimax

strategy for training data bounded by hyper-rectangles. They

minimize the worst-case loss over data in given intervals.

Zhou et al. [17] present two attack models for which

optimal learning strategies are derived. They formulate a

convex optimization problem in which the constraint is

defined over the sample space based on the proposed attack

models. They demonstrate that their adversarial SVM model

is more resilient to adversarial attacks compared to the

standard SVM and one-class SVM models.

III. RELEVANCE VECTOR MACHINE

Given a set of N training data (xi, yi), i = 1, . . . , N ,

where xi ∈ R
d are d-dimensional data points, and yi ∈

{0, 1} are the labels, a function h(x) over the input space

is inferred in the following linearly weighted form:

h(x;w) = wTφ(x)

where φ(x) represents basis functions, and

φ(x) = [1,K(x, x1),K(x, x2), . . . ,K(x, xN)]

where K(x, xi) is a kernel function. For a binary clas-

sification problem, the posterior probability of the class

membership given x as the input is:

p(y|w) =
N∏
i=1

g(h(xi;w))
yi [1− g(h(xi;w))]

1−yi (1)

where g(t) is the sigmoid function g(t) = 1/(1 + e−t)
applied to t. Since there are as many weight parameters as

the training examples, the model would suffer over-fitting.

To avoid over-fitting, a zero-mean Gaussian prior is defined

over the weights, with each prior controlled by its own

hyperparameter α. Therefore,

p(w|α) =
N∏
0

N (wi|0, α−1
i)

where αi is the hyperparameter of wi. The assignment of an

individual hyperparameter to each weight gives an equivalent

regularization penalty term. When a hyperparameter has a

very large value (often approaching infinity), the regularizing

effect becomes so large that the corresponding weight pa-

rameter rapidly converges to zero and thus the corresponding

basis function can be pruned. When a hyperparameter has a

small value, the prior has very little effect on the weight

parameter it moderates, and therefore the corresponding

basis function φk(x) is a relevant feature, and the example

xk it centers is selected as a relevant vector.

Since the weight posterior p(w|y, α) and the marginal

likelihood p(y|α) cannot be computed analytically, Tip-

ping [3] adopted a Laplacian approximation method to

iteratively estimate the posterior covariance for a Gaussian

approximation to p(w|y, α) centered at the mean w. The

mean and the covariance are then used to optimize the

hyperparameter α. Details can be found in his work [3].

Within the Bayesian framework of the relevance vector

machine, we introduce another set of parameters that directly

weigh the difference between two vectors in each dimension

in the input space. In the next section, we discuss the use of

individual kernel parameters to model adversarial attacks.

7701207

IV. KERNEL PARAMETER FITTING

The RVM training process iteratively updates the weight

vector w and the hyperparameter vector α. Imagine in each

iteration the adversary has an opportunity to modify the

training data, particularly the positive (malicious) training

data, so that it could cross the decision boundary inferred

in the current iteration. What would be the best strategy

for the adversary to modify the data? If the adversary has

the freedom to move each data point in his own favor, he

would follow the directions that increase the likelihood of

misclassifying a positive instance the greatest. Before we

discuss the technique to search for this direction, we first

discuss the kernel and its input scale parameters.

A. Kernel Parameter Vector

Consider the RBF kernel

K(xi, xj) = exp(−η · ||xi − xj ||2)
where η = (η1, . . . , ηd) is a vector of d parameters, and ηk is

its kth parameter preceding the squared distance (xik−xjk)
2

in the kth input dimension. Normally, there is only one ker-

nel parameter and its value is typically determined through

cross-validations. We use individual kernel parameters so

that we can model adversarial data modification in each

dimension. For example, when the adversary modifies the

kth dimension such that xik ≈ xjk, the same effect can

be achieved by having ηk ≈ 0. Therefore, by adjusting the

kernel parameter of the kth dimension of the input, we could

model adversarial attacks in both the input space and the

feature space. We can then update the weight parameter and

the corresponding hyperparameters to counter the attacks.

B. Attacks Minimizing the Log-Likelihood

Assuming the adversary is only interested in disguising

positive data 1, during RVM training we search for a kernel

parameter vector η that renders the most effective attacks

on positive training instances. With a given w and α, we

update η in the direction that decrease L+, the log-likelihood

of the posterior distribution p(y|w,α) given in Equation (1)

for all positive instances. Taking the logarithm of both sides

of Equation (1), we have:

log(p(t|w)) =
N∑
i=1

[yilog(σi) + (1− yi)(1− log(σi))] (2)

where σi = g(h(xi;w)) is the output of the sigmoid

function. Let L = log(p(t|w)) = L+ + L−, where

L+ =
N∑
i=1

yilog(σi) and L− =
N∑
i=1

(1− yi)(1− log(σi)).

1This is a reasonable assumption since it is typically harder for adver-
saries to influence negative (legitimate) data.

The gradient of L given in (2) with respect to the ηk is:

∂L
∂ηk

=
N∑
i=1

N∑
j=1

∂L
∂Kij

∂Kij

∂ηk

=
N∑
i=1

N∑
j=1

(
∂L+

∂Kij
+

∂L−
∂Kij

)
∂Kij

∂ηk

where Kij is the kernel function K applied to the ith and jth

input xi and xj . To model attacks on the positive instances,

we negate
∂L+

∂Kij
, and use the following for a gradient-based

local optimization over η:

G =
N∑
i=1

N∑
j=1

(− ∂L+

∂Kij
+

∂L−
∂Kij

)
∂Kij

∂ηk
. (3)

Working out each term, we have:

∂L+

∂Kij
= yi · 1

σi
· ∂σi

∂h
· ∂h

∂Kij

= yi · (1− σi) · wj

∂L−
∂Kij

= (1− yi) · −1
1− σi

· ∂σi

∂h
· ∂h

∂Kij

= −(1− yi) · σi · wj

∂Kij

∂ηk
= −Kij · (xik − xjk)

2

Therefore,

G =
N∑
i=1

N∑
j=1

−(yi − σi) · wj ·Kij · (xik − xjk)
2

which will be the basis for updating η in each iteration of

training a relevance vector machine.

C. Training Issues

During training, we need to iteratively update three param-

eters: the weight w, the hyperparameter α, and the kernel

parameter vector η. One way to update these parameters is

to optimize over w/α and η simultaneously. This allows

us to find the optimal solution, but will be computationally

intensive. Another way to do it is to interleave the update of

w/α and η. For each (w,α), we search a few steps for Δη
based on the gradient of the log-likelihood, and update η by

adding τ · Δη to it, where τ > 0 is the momentum. This

approach may not lead to the desired solution, but is more

efficient. In this paper, we follow the local update approach.

We train multiple adversarial RVM models, and select M
models that satisfy u+ < ρ · u−, where u+ denotes the

uncertainty of predicting a positive training instance, and

u− the uncertainty of predicting a negative training instance,

and ρ ∈ (0, 1] is a positive constant. The smaller the ratio

ρ = u+

u−
, the farther away the decision boundary from the

positive training examples. The uncertainties u+ and u−

7711208

are estimated on the positive and negative training data as

follows:

u+ =

∑N
i=1 yi · (1− h(xi;w))∑N

i=1 yi
(4)

u− =

∑N
i=1(1− yi) · h(xi;w)∑N

i=1(1− yi)
(5)

where
∑N

i=1 yi is the total number of positive training

instances, and
∑N

i=1(1 − yi) is the number of negative

training instances. We select M such models and combine

them to make the final predications through majority vote.

D. Adversarial RVM Learning Algorithm

We now present the algorithm of adversarial RVM learn-

ing, namely AD-RVM. Given a set of training data, we first

initialize the value of α and use it to update the weight

vector w; next, we update the kernel parameter vector η with

the given w and α; finally we update the hyperparameter

α. The process iterates for a pre-defined maximum number

of rounds. We train multiple such classifiers and select M
classifiers that satisfy ρ ·u+ < u− to form an ensemble. The

detailed algorithm is given in Figure 1.

Input: L, T—training and test data

w,α—weight and hyperparameter

η—kernel parameter

M—number of classifiers in the ensemble

τ—momentum of updating η in each iteration

Iw—number of iterations updating w and α
Iη—number of inner cycles updating η

Output: ensemble {h1, h2, . . . , hM}
1: Initialize α
2: repeat
3: for i = 1 to Iw do
4: Update w with current α values

5: for i = 1 to Iη do
6: Compute Δη using Equation (3)

7: η = η + τΔη // end for
8: Update feature space with new kernel parameters

9: Solve for α with w and η // end for
10: Compute u+ and u− using equations (4) and (5)

11: if ρ · u+ < u− then
12: add h(w,α, η) to the ensemble

13: until M RVMs are added to the ensemble

14: return {h1, h2, . . . , hM}
Figure 1. The AD-RVM algorithm.

V. EXPERIMENTAL RESULTS

We used one artificial data set and two real data sets in our

experiments. We model the attacks at classification time by

moving positive test instances closer to randomly selected

negative instances plus local random noise. Attacks on the

test data are designed to challenge all the learning models at

increasingly more difficult levels. The difficulty is controlled

using the attack factor fattack. More specifically,

x+
ij = x+

ij + fattack · (x−ij − x+
ij) + ε (6)

where ε is local random noise. Notice fattack = 1 models the

worst case attacks where a positive data point is arbitrarily

close to a negative one within the range of the random local

noise. Figure 2 illustrates the attack with fattack = 0.3.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

2−class synthetic data with attacks

Figure 2. Attack Factor = 0.3. White dots: negative data, black dots:
positive data before attacks, black “+”: positive data after attacks.

We compare four learning models: AD-RVM, RVM,

SVM, and One-class SVM on the three data sets. All results

reported are averaged over 10 random runs.

A. Experiments on the Artificial Dataset
The synthetic data set is generated from a bivariate

normal distribution with specified means (−5.0,−6.0) and

(5.0, 6.0), and covariance matrix

(
1.0 0.5

0.5 2.0

)
. We first

consider the cases where the training data is clean and only

the test data has been corrupted. Attacks on the test data are

created using Equation (6). Table I shows the classification

performance on this set of data in terms of error rates. The

ρ value which controls the uncertainty of predicting positive

and negative data is chosen as 0.67. We discuss the impact

of ρ later.

Table I
CLASSIFICATION ERRORS OF AD-RVM, RVM, SVM, AND 1-CLASS

SVM ON SYNTHETIC DATA. BEST RESULTS ARE BOLDED.

fattack
0.1 0.3 0.5 0.7 0.9

AD-RVM 0.0025 0.0175 0.1435 0.3205 0.4500
RVM 0.0100 0.0810 0.2542 0.4305 0.5000
SVM 0.0105 0.0705 0.2500 0.4355 0.4910

1-class SVM 0.0059 0.1310 0.5000 0.5000 0.5000

From Table I, we can see that adversarial RVM algorithm

has much lower error rates compared to its non-adversarial

7721209

self, SVM, and one-class SVM. The improvement is at-

tributed to its adjustment to the decision boundary to counter

adversarial attacks. The adjustment includes shifting and

curving toward the negative data points as shown in Figure 3.

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

RVM Classification: the decision boundary of the synthetic data

Positive
Negative

(a) Decision Boundary Shifting

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

RVM Classification: the decision boundary of the synthetic data

Positive
Negative

(b) Decision Boundary Curving

Figure 3. Adjustment to decision boundary to take into account potential
adversarial attacks. Solid lines in the plots illustrate the decision boundary.

In forming the ensemble, we use the positive and negative

uncertainty ratio to determine which hypothesis is included

in the ensemble. The higher the ratio, the more confident

the classifier is when predicting an instance as a positive

example. Note that this is necessary because we took the

non-simultaneous updating approach in searching for the

kernel parameters. This approach is less reliable than the

more expensive simultaneous updating technique. However,

we gain speed and, with little additional effort, accuracy

as well. We now illustrate the impact of the ρ value used

in the uncertainty test. Smaller ρ values imply more bias

against the negative prediction, while larger values has less

bias. Figure 4 illustrates the impact of the ρ values on the

classification errors using AD-RVM. The y-axis shows the

improvement of error rates of AD-RVM compared to RVM

without adversarial treatment. As can be observed, the lower

the ρ value, the more improvement achieved. However, if the

ρ value is set too small, eventually false positives will start

increasing and defeating the purpose of adversarial learning.

The lower bound of the ρ value needs to be carefully set,

especially when there are dense positive and negative data

points distributed near the decision boundary.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Rho

Im
p

ro
ve

m
en

t
o

n
 c

la
ss

if
ic

at
io

n
 e

rr
o

r
ra

te
s

The impact of the Rho value

Figure 4. The impact of the ρ (Rho) values. Smaller ρ values has higher
inherent bias against negative class membership.

We also tested cases where the training data is not clean.

Again, AD-RVM is clearly more robust against adversarial

attacks although its superiority becomes less marked. Due

to space limitations, we do not report the results here.

Figure 5 illustrates the decision boundary learned from

corrupted training datasets. Figure 5(a) shows how the

decision boundary can be forced to move drastically closer

to the negative side with fattack = 0.1 on the test data. The

ρ value is set to 0.67. A slightly better decision boundary

is learned with ρ = 0.76 as shown in Figure 5(b). This

experiment reminds us of the importance of setting the lower

bound of the ρ value. When the ρ value is too small, false

positives become more likely in the output. In practice, we

suggest the ρ value not be greater than 0.5. However, in any

domain where adversarial attacks could be very aggressive,

a smaller ρ value is preferred.

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

RVM Classification: the decision boundary of the synthetic data

Positive
Negative

(a) ρ = 0.67

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

RVM Classification: the decision boundary of the synthetic data

Positive
Negative

(b) ρ = 0.76

Figure 5. Adjustment to decision boundary to take into account potential
adversarial attacks. Sold lines in the plots illustrate the decision boundary.

Like any other kernel-based approaches, it is important

to select the initial η value. Small η values may cause the

learning model over-sensitive to the training samples. Large

η vales may lead to serious over-fitting. On the negative

side, this may require cross-validation, adding additional

computational cost. On the positive side, inappropriate initial

η values often quickly lead to deterioration to non-positive

definite feature vector, which causes the solver to terminate

prematurely. If this happens, it often means a larger η value

is required.

B. Experiments on Real Datasets

The two real datasets used in our experiments are: spam
base from the UCI data repository 2, and web spam from

the LibSVM website 3. Both datasets are collected from

applications typically running in an adversarial environment.

In the spam base data set, there are 4601 e-mail examples

in total, among which 39.4% is spam. Each example is

represented with 57 attributes and one class label. In our

experiment, the data set was divided into two equal halves,

one for training and the other for testing. 5% of the training

data is randomly sampled to build the four learning models

in each run. The results are averaged over 10 random runs.

Table II shows the classification error rates of the four

learning algorithms. The one-class SVM output the best

2http://archive.ics.uci.edu/ml/
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

7731210

results when fattack ≤ 0.5 while our adversarial RVM

algorithm ranked second and had a better performance than

RVM and SVM. Our AD-RVM outperformed all the other

algorithms when fattack > 0.5.

Table II
CLASSIFICATION ERRORS OF AD-RVM, RVM, SVM, AND 1-CLASS

SVM ON THE SPAMBASE DATASET. BEST RESULTS ARE BOLDED.

fattack
0.1 0.3 0.5 0.7 0.9

AD-RVM 0.3158 0.3270 0.3368 0.3438 0.3809
RVM 0.3875 0.3753 0.3775 0.3899 0.3902
SVM 0.3641 0.3751 0.3793 0.4149 0.4079

1-class SVM 0.3127 0.3147 0.3248 0.3555 0.4011

The web spam data set is the uni-gram version from the

LibSVM website. There are 254 features in each example.

We further reduce the number of features to 50. The total

number of instances is 350,000. We used one-half for

training and the other half for testing. We randomly selected

2% of the samples in the training set to build the learning

models. The results are averaged over 10 random runs and

are shown in Table III. As can be observed, adversarial-RVM

is clearly superior to the other three models.

Table III
CLASSIFICATION ERRORS OF AD-RVM, RVM, SVM, AND 1-CLASS

SVM ON THE WEBSPAM DATASET. BEST RESULTS ARE BOLDED.

fattack
0.1 0.3 0.5 0.7 0.9

AD-RVM 0.2426 0.2926 0.3373 0.4945 0.5866
RVM 0.2355 0.3169 0.4541 0.5560 0.5876
SVM 0.2725 0.4725 0.5604 0.6061 0.6061

One-class SVM 0.3155 0.5625 0.5945 0.6009 0.5997

VI. CONCLUSIONS AND FUTURE WORK

We present a sparse Bayesian adversarial learning model.

The algorithm sets individual kernel parameters to model

adversarial attacks in the feature space by minimizing the

log-likelihood of the positive instances in the training set.

The learning models trained under this setup are more robust

against attacks including the very aggressive ones. The open

problem is to discover an efficient approach to simultane-

ously update the kernel and the learning parameters. The

solution would help find the optimal learning model against

the worst case attacks in the sample space.

ACKNOWLEDGMENT

This work was partially supported by The Air Force

Office of Scientific Research MURI-Grant FA-9550-08-1-

0265 and Grant FA9550-12-1-0082, National Institutes of

Health Grant 1R01LM009989, National Science Founda-

tion (NSF) Grant Career-CNS-0845803, NSF Grants CNS-

0964350, CNS-1016343, CNS-1111529, and CNS-1228198,

Army Research Office Grant 58345-CS.

REFERENCES

[1] M. Kearns and M. Li, “Learning in the presence of malicious
errors,” SIAM J. of Computing, vol. 22, pp. 807–837, 1993.

[2] P. Auer and N. Cesa-Bianchi, “On-line learning with mali-
cious noise and the closure algorithm,” Annals of Mathematics
and Artificial Intelligence, vol. 23, no. 1-2, pp. 83–99, 1998.

[3] M. E. Tipping, “Sparse bayesian learning and the relevance
vector machine,” J. Mach. Learn. Res., vol. 1, pp. 211–244,
Sep. 2001.

[4] N. H. Bshouty, N. Eiron, and E. Kushilevitz, “Pac learning
with nasty noise,” Theoretical Computer Science, vol. 288, p.
2002, 1999.

[5] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings
of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, 2005, pp. 641–647.

[6] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma,
“Adversarial classification,” in Proceedings of the tenth ACM
SIGKDD. ACM, 2004, pp. 99–108.

[7] M. Kantarcioglu, B. Xi, and C. Clifton, “Classifier evaluation
and attribute selection against active adversaries,” Data Min.
Knowl. Discov., vol. 22, pp. 291–335, January 2011.

[8] M. Bruckner and T. Scheffer, “Nash equilibria of static predic-
tion games,” in Advances in Neural Information Processing
Systems. MIT Press, 2009.

[9] W. Liu and S. Chawla, “Mining adversarial patterns via
regularized loss minimization,” Mach. Learn., vol. 81, pp.
69–83, October 2010.

[10] M. Bruckner and T. Scheffer, “Stackelberg games for adver-
sarial prediction problems,” in Proceedings of the 17th ACM
SIGKDD. ACM, 2011.

[11] G. R. G. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and J. M.
I., “A robust minimax approach to classification,” Journal of
Machine Learning Research, vol. 3, pp. 555–582, 2002.

[12] C. H. Teo, A. Globerson, S. T. Roweis, and A. J. Smola,
“Convex learning with invariances,” in Advances in Neural
Information Processing Systems, 2007.

[13] O. Dekel and O. Shamir, “Learning to classify with missing
and corrupted features,” in Proceedings of the International
Conference on Machine Learning. ACM, 2008, pp. 216–223.

[14] O. Dekel, O. Shamir, and L. Xiao, “Learning to classify
with missing and corrupted features,” Machine Learning, vol.
81(2), pp. 149–178, 2010.

[15] A. Globerson and S. Roweis, “Nightmare at test time: robust
learning by feature deletion,” in Proceedings of the 23rd
ICML. ACM, 2006, pp. 353–360.

[16] L. El Ghaoui, G. R. G. Lanckriet, and G. Natsoulis, “Robust
classification with interval data,” EECS Department, UC
Berkeley, Tech. Rep. UCB/CSD-03-1279, Oct 2003.

[17] Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and B. Xi, “Ad-
versarial support vector machine learning,” in Proceedings of
the 18th ACM SIGKDD. ACM, 2012, pp. 1059–1067.

7741211

