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Abstract

The increasing integration of patient-specific genomic data into clinical practice and research raises serious privacy concerns.

Various systems have been proposed that protect privacy by removing or encrypting explicitly identifying information, such as name

or social security number, into pseudonyms. Though these systems claim to protect identity from being disclosed, they lack formal

proofs. In this paper, we study the erosion of privacy when genomic data, either pseudonymous or data believed to be anonymous,

are released into a distributed healthcare environment. Several algorithms are introduced, collectively called RE-Identification of

Data In Trails (REIDIT), which link genomic data to named individuals in publicly available records by leveraging unique features

in patient-location visit patterns. Algorithmic proofs of re-identification are developed and we demonstrate, with experiments on

real-world data, that susceptibility to re-identification is neither trivial nor the result of bizarre isolated occurrences. We propose

that such techniques can be applied as system tests of privacy protection capabilities.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Modern medicine is currently in the midst of a ge-

nomics revolution that promises significant opportuni-

ties for healthcare advancement [1,2]. At the same time,

the increased incorporation of genomic data into med-

ical records and the subsequent sharing of such data

raise complex patient privacy issues. These issues have
yet to be sufficiently addressed by the biomedical com-

munity. In general, the term privacy is semantically

overloaded and now encompasses many distinct topics,

which makes discussions of privacy both confusing

and difficult to resolve. To be specific, this work ad-

dresses anonymity, a component of privacy concerning

the control of identity, from the scientific perspective.
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It provides provable assurances about data anonymity,

such that data cannot be related to the identities to

whom the data corresponds. For the most part, it ne-

glects security components and policy decisions affili-

ated with privacy protection, which have been discussed

elsewhere [3–5].

Recently, several identity protection solutions have

been proposed to address the problem of anonymity.
Many methods advocate the use of encrypted pseud-

onyms [6,7] or the de-identification [8,9] of explicit

identifiers, such as name or social security number, ini-

tially associated with genomic data. However, these

solutions lack proofs or guarantees of privacy afforded

to the protected data. Contrary to popular belief, the

protection of a patient�s anonymity in genomic data is

not as simple as removing, or replacing, explicit identi-
fying attributes. Though genomic data may look anon-

ymous, anonymity can only be guaranteed when

inferences that can be garnered from genomic data itself
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are accounted for. While encryption and de-identifica-
tion prevent the direct linking of genomic data to ex-

plicit identity, research presented in this paper contends

that they provide a false appearance of anonymity.

Specifically, this work is concerned with genomic data

scattered across a set of locations. In a distributed data

sharing environment, patients visit and leave behind

data at multiple data-collecting locations, such as hos-

pitals. Each location may sever genomic data from
clinical data and, subsequently, release genomic data in

order to enable such endeavors as basic research [10,11].

It is in this environment, where we prove that the ano-

nymity of the genomic data can be compromised.1 We

develop and evaluate a general technique for re-identi-

fying seemingly anonymous genomic data to the named

individuals that the data were derived from. In actuality,

our re-identification techniques can be applied in many
other real-world environments in which the re-identifi-

cation within can be applied. For example, the online

realm is another distributed environment, in which IP

addresses can be re-identified to named individuals.

However, each environment that is potentially suscep-

tible to our methods is defined by its own set of complex

socio-technological interactions, including legal protec-

tions, the ability for data collection, and controls on
data sharing. To discuss and prove the existence of a

trail re-identification concern for a different environ-

ment, such as for health or another type of data, it must

be analyzed in light of the environmental policies,

oversight, methods of sharing, and data availabilities.

Thus, this paper addresses the features that enable re-

identification to occur for genomic data.

Our work serves two main purposes. First, it raises
awareness that anonymity protection methods must

account for healthcare and medical inferences that exist

in a data sharing environment. Second, this work pro-

vides the biomedical community with a formal compu-

tational model of a re-identification problem that

pertains to genomic data. We believe that our models, as

well as others [13,14], can be applied as tests of the

privacy protection capabilities of existing and develop-
ing privacy protection systems.

The remainder of this paper is organized as follows.

In the following section, we present some deficiencies in

current protection methods, as well as discuss the extent

to which Institutional Review Boards and Data Use

Agreements are applicable (and the lack thereof). Next,

in Section 3, we review and formalize a simple model of
1 This research does not explicitly consider the environment of

clinical trials [12] are under more scrutiny, with tighter control and

oversight. In clinical trials, researchers are often required to indicate

any intent to link genomic data with other types of data, including

identifying information. Though such protocols do not prevent

researchers from employing our model of re-identification, there is a

much lesser concern that such a use would occur.
re-identification that this work builds upon. Then, in
Section 4, re-identification methods are formalized as a

family of computational algorithms. In Section 5, we

analyze how the algorithms perform with real-world

data. Finally, in Section 6 we discuss the limitations,

possible extensions of our methods, and how this work

can help researchers design more adequate anonymity

protection techniques.
2. Background

There are several reasons why current privacy pro-

tection methods fail to sufficiently protect the anonymity

of genomic data. One reason for this failure is that

current methods neglect to protect identifying inferences

drawn from the genomic data itself. A second reason
concerns the ability to relate genomic information to

other publicly available information.

2.1. Previous related research

The ability to infer identifying features from genomic

data is exemplified by our prior research into genotype–

clinical phenotype relations. We developed a general
model with the capability of learning patient-specific

genomic data from publicly available longitudinal

medical information [15]. The model relates a disease�s
symptoms to particular clinical states of the disease.

Appropriate weighting of the symptoms is learned from

observed diagnoses to subsequently identify the state of

the disease presented in hospital visits. This approach is

applicable to any simple genetic disorder with defined
clinical phenotypes. The efficacy of our model was

demonstrated by inferring specific DNA mutations of

clinically positive Huntington�s disease patients. Specif-

ically, our model utilized existing knowledge about the

strong inverse correlation between the disease age of

onset and the number of CAG repeat mutations in the

HD gene.

In other previous research, we presented a specific
scenario where genomic data, devoid of any identifiers,

was uniquely re-identified, through an algorithm called

RE-Identification DNA (REID), to the name and de-

mographics of the patients that the data were collected

from [16]. The REID algorithm exploits what we now

refer to as the trail generated by occurrences of the data

across independent hospitals. Releasing the genomic

data alone, even devoid of pseudonyms, provides no
guarantee of anonymity because the locations at which

the genomic data appear can be compared to occur-

rences of patients at hospitals using hospital discharge

data [17]. These trails of genomic data and trails of

patient appearances in medical data can match uniquely.

However, the REID algorithm is limited in its scope

because genomic data re-identification can occur only if
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a strict set of assumptions hold. Therefore, in this paper
we both generalize our original re-identification tech-

nique and introduce a family of trail re-identification

methods that relax these assumptions for more general

applicability.

2.2. Genomic data, IRBs, and DUAs

When genomic data are shared, it may or may not be
the case that a data use agreement (DUA) is required.

This requirement is dependent on whether or not the

data are provided under ‘‘research purposes’’ as speci-

fied by Health Insurance Portability and Accountability

(HIPAA) Privacy Rule. For example, collections of

hospital discharge data are not subject to HIPAA pro-

tections, since the governing body over this type of in-

formation is not considered a ‘‘covered entity.’’
Moreover, HIPAA does not explicitly classify DNA-

based data (e.g., sequence data, expression microarrays)

as an identifying attribute of a patient. Arguably, DNA

data could be released under the Safe Harbor provision

of the HIPAA Privacy Rule.

When considering the genomic data, we need to

clarify what the data sharing environment is. For in-

stance, when a dataset is made publicly available it is not
subject to IRB review, nor are DUAs required. We have

already seen the advent of a handful of public use DNA

datasets, such as the National Center for Biotechnol-

ogy�s PopSet database. These types of collections cir-

cumvent the issues of ‘‘attendant protections’’ and

‘‘Institutional Review Board (IRB) oversight,’’ since the

data are already on publicly available websites. How-

ever, in certain cases, we recognize that these modes of
sharing might severely limit access or availability to

genomic data for more complex research and analysis.

In contrast, if DNA data are to be (1) shared for

research purposes and (2) subject to HIPAA Privacy

Rule constraints, then a DUA is required. In addition,

an IRB approval is required if the research is federally

funded. Yet, one of the exemptions to oversight an IRB

will provide is if the data are believed to be anonymous.
Thus, if DNA data are found to be potentially vulner-

able to re-identification methods, such as those in this

paper, then the DUA and IRB protections may be

forced to be strengthened.

As stated, it is not the case that a DUA and IRB

approval are required. However, even when these are

required, they may base their decision on false beliefs

about the identifiability of the data. Thus, there is no
guarantee that the data, which has been subject to a

DUA and IRB review alone, are protected sufficiently

from re-identification methods. While it is true that re-

identification may be prohibited in the DUA, as a policy

it is not sufficient to prevent someone (i.e., a malicious

employee) from re-identification. Our argument is that

policy is strengthened when complemented by technol-
ogy to ensure more controllable and enforceable pro-
tection. Rather than harp on the extent to which the

IRB and DUA delegate responsible research, it is better

to address policy infused with technology.
3. Data model

The re-identification algorithms are best understood
by structuring the data released by data holders. In this

section we discuss the process by which data are orga-

nized and the properties that appear in the resulting data

structures. We begin with an example of a data col-

lecting and sharing example.

3.1. Scenario

Consider the following situation. John Smith is ad-

mitted to a local hospital, where he is diagnosed, via a

DNA diagnostic test, with a DNA-influenced disease,

such as cystic fibrosis. The hospital stores the clinical

and DNA information in John�s electronic medical re-

cord. For treatment, John visits several other hospitals,

where his electronic medical record is also collected and

stored. For research purposes, the hospitals forward
certain DNA databases, including John�s DNA, onto a

research group [1,2]. The DNA records are tagged with

the submitting institution and with pseudonyms for their

submitted sequences [9]. By state law, the hospital sends

a copy of the identified discharge record, including

name, gender, zip code, visit date diagnoses, and pro-

cedures, onto a state-controlled database. The discharge

database is made publicly available in a de-identified
format and can be re-identified to publicly available

records, such as voter registration databases [13,18,19].

This final step of linking is based on the uniqueness of

demographics, which has been validated in previous

data privacy research, as well as in demography, public

health, and epidemiology communities [20,21]. The

availability and potential of re-identification remain

even under the new medical privacy resolutions,
including HIPAA. As a result, we can track which

hospitals John visited in the discharge data and we can

track his DNA information in the research data. The

sets of locations John visited we call a trail, and unique

features of trails allow DNA trails in the research data

to be matched to trails from their identified discharge

database counterparts.

3.2. Basic model

The basic model elements are derived from relational

database theory. The term data refers to information

held by a data-collecting location, such as a hospital.

The data are organized as a table sðA1;A2; . . . ;ApÞ, with
attributes A ¼ fA1;A2; . . . ;Apg. Each row is a p-tuple
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consisting of patient information t½a1; . . . ; ap�, and rep-
resents the sequence of values, a1 2 A1; . . . ; ap 2 Ap. The

size of the table is simply the number of tuples and is

represented jsj. In our model, each data-collecting lo-

cation releases its data table as two separate tables of

information. The first table, sþ, is called the identified

subtable and contains explicitly identified data (e.g.,

name, address, social security number, etc.) with attri-

butes Aþ, where Aþ � A. The second table, s�, is called
the DNA subtable and consists of DNA information

only, with attributes A� � A.
As an example, consider the database records in

Fig. 1, where generic clinical data are stored in sþ and

electronic DNA sequences are stored in s�. Notice that

at the location housing the database the relationships

between DNA and identities is explicitly known, while

in the partitioned release the order of the tuples may be
changed.

Before continuing, several assumptions about the

environment should be made evident. First, it is as-

sumed that each data-collecting location releases data

collected by itself and from no external source. There-

fore, it is not possible for hospital H to release the DNA

sequences of patient X if patient X never visited hospital

H. Second, tuples released in the de-identified and
identified tables are unique for each patient. Though a

patient may visit a hospital on multiple occasions, the

information released by the hospital corresponds to a

patient, but not to the frequency of the patient�s visits to
a hospital.

3.3. Data structures

The static nature of patient demographics and ge-

nomic information allows for data to be followed across

releases from different locations. We make the tracking

of data explicit by constructing two matrices. The first

matrix is called the DNA track N, and consists of in-

formation pertaining to shared DNA data. The dimen-

sions of this matrix are j [c2C s�c j � (jA�j þ jCj) and each

row in this matrix corresponds to a unique DNA sample
released by the set of locations. The cells of the first jA�j
columns of the matrix represent the DNA information
Fig. 1. Table s is the data collection of a specific location and consists of all d

of s in the figure results in two subtables: an identified table sþ of patient d

There is no reason that the ordering of the rows in sþ and s� must be the same

s� in the original table s.
collected from s�c . The latter jCj cells are Boolean rep-
resentations of the DNA data at each location. Values

associated with the locations are 1 if the DNA sample

was released from the location and 0 otherwise. The

second matrix is called the identified track P and is

similar to the first matrix, except it maintains a repre-

sentation of the identified data in the first jAþj cells. For
a more concrete example, the data releases of three lo-

cations and the corresponding tracks P and N are pro-
vided in Fig. 2.

When every location releases tables, such that the

only tuples present in s� have corresponding tuples in

sþ, and vice versa, we say that the tracks are unreserved.

The tracks P and N in Fig. 2 are unreserved. However,

both data releasers and patients are autonomous enti-

ties, and either can choose to withhold certain infor-

mation. Thus, releases that are unreserved are not
always practical and, at times, can be impossible to

achieve. Consequently, we say that track N is reserved to

track P if for every location c, for each tuple x 2 s�c
there exists a tuple y 2 sþc , such that both x and y are

derived from the same tuple in s. Similarly, P can be

reserved to track N. By substituting c03 for c3, in Fig. 2,

the DNA track N0 is reserved to the identified track P.
The vector of binary values associated with the latter

jCj attributes we refer to as a trail. We denote a trail for

data d in an arbitrary track T as trail (T,d). When a trail

resides in an unreserved track, it is called a complete trail

because the binary values unambiguously convey the

presence or absence of a patient at a location. When a

trail exists in a reserved track (e.g.,N0 of Fig. 2) it is called
an incomplete trail, since the value of 0 is ambiguous.

Through the ambiguity present in the 0 value, there is
a simple relationship between a patient�s incomplete trail

and complete trail. We say that a trail x is a subtrail of

trail y (x6 y) if for every value of 1 in x, there is a value

of 1 in y. Similarly, y is the supertrail of x. The ambiguity

prevents a direct mapping of an incomplete trail in one

track to its complete trail in the other track. This is

because, given an incomplete trail made up of n

locations with m 0�s, there are 2m potential complete
trails that the incomplete trail could be mapped to. For

example, using tracksP andN0 fromFig. 2, cttg. . .a[0,1,0]
epicted attributed Name, Birthdate, . . ., DNA. The vertical partitioning

emographics and a DNA table s� containing de-identified sequences.

as in s. The arrows specify the truth about which tuples of sþ belong to



Fig. 2. (Left) Identified (P) and DNA (N) tracks created from unreserved releases of three locations c1, c2, and c3. Both P and N are unreserved

tracks. (Right) Resulting DNA track N0 is created from the substitution of the reserved release from c03 for the unreserved release of c3. As a result of

this substitution, N0 is reserved to P.
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and acag. . .t[1,1,0] are subtrails of John[1,1,0]. Similarly,

John[1,1,0] and Bob[0,1,1] are supertrails of cttg. . .a
[0,1,0].

We have now described the data sharing environ-

ment, the data structures, and their formal properties. In

the following section, we provide a set of algorithms that
utilize these data structures and properties for re-iden-

tification purposes.
Table 1

Classification of re-identifications made by REIDIT-C

Re-identification No re-identification

trail(N, n) ¼ trail(P, p) Correct match False non-match

trail(N, n) 6¼ trail(P, p) False match Correct non-match

The first and second rows of the contingency table correspond to

outcomes for when the considered trails are equivalent or not,

respectively. Light-shaded cells are possible outcomes and the dark-

ened cell is an impossible outcome.
4. Re-identification algorithms

Given the tracks constructed above, the trail re-iden-

tification problem is how to properly and uniquely link
identified data to DNA data through common features in

their trails. In this section we will provide algorithms for

doing exactly this. The two algorithms presented in this

section are collectively termed Re-identification of Data

in Trails (REIDIT), since each exploits a different aspect

of the relationships between trails.

4.1. REIDIT-Complete

The first re-identification algorithm is called REIDIT-

Complete, or REIDIT-C, which performs exactmatching
Fig. 3. Pseudocode for the R
on the trails in tracksN andP. It assumes that bothN and

P are unreserved, and therefore, is only applicable with

complete trails. The pseudocode of REIDIT-C is

provided in Fig. 3. For every tuple n 2 N, REIDIT-C

determines if there exists one and only one tuple p 2 P
such that trail(N,n) equals trail(P,p). When there is an
exact and unique match, then the genomic data of

trail(N,n) are re-identified to explicitly identifying

information in P. If trail(N,n) is equivalent to both

trail(P,p) and trail(P,p0), where p 6¼ p0, then there is an

ambiguity and no re-identification can occur.

REIDIT-C can generate the four possible results for

two arbitrary trails trail(N,n) and trail(P,p), as shown in

Table 1: (1) correct match, (2) correct non-match, (3)
false non-match, and (4) false match. The first three can
EIDIT-C algorithm.
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occur, while the last is impossible. The reasoning is as
follows. One of the main assumptions of the unreserved-

release model is that both trails in P and N are complete.

This allows for several directly applicable implications.

First, it implies that for each trail in P, there must exist a

minimum of one equivalent trail in N. In turn, by the

definition of a complete trail, a correct match can only

be made when trail(N,n) � trail(P,p). When there is only

one equivalent trail in N for trail(P,p), as well as only
one equivalent trail in P for trail(N,n), then this must be

a correct match. In the event that, there are multiple

equivalent trails, then for trail(N,n) there will be a set of

equivalent trails in P, one of which must be a correct

match. Since the correct trail is indistinguishable from

the incorrect trails, no match will be made. To prevent a

false match from being assigned, a false non-match will

occur. Finally, when trail(N,n) 6¼ trail(P,p), then the two
trails cannot refer to the same entity, and thus a correct

non-match will be made.

The computational complexity of REIDIT-C, as

presented in Fig. 3, is quadratic in the size of the DNA

table, O(jNj2). We can count the number of steps as

follows. First, the outer loop iterates over all of the tu-

ples in N, which is jNj iterations. Second, for each it-

eration in N, the algorithm iterates a maximum of jPj
times. This provides O(jNj d jPj), which equals O(jNj2)
because jNj ¼ jPj. However, the quadratic bound is an

artifact of the way in which the pseudocode is written.

Another version based on sorting could be written, such
Fig. 4. Pseudocode for REIDIT-I-Fast, a variant o
that both sets of trails are sorted and then compared.
Though more complex in the data structure, the new

version would produce a complexity bound of

O(jNj log jNj).

4.2. REIDIT-Incomplete

The second re-identification algorithm is named

REIDIT-Incomplete, or REIDIT-I. It is applicable
when one track is reserved to the other. Fig. 4 provides

pseudocode and commentary for a variant of the algo-

rithm.

The basic implementation of the algorithm works as

follows. For each trail in the track containing incom-

plete trails, the set of its supertrails from the other track

is determined. If there is only one supertrail, then a

correct re-identification has occurred. The re-identified
trails from N and from P are then removed. The re-

moval of the re-identified trails is a crucial step. Since

the complete trail can have multiple subtrails, failure to

remove the trail from consideration can prevent addi-

tional trails from being re-identified. This process con-

tinues until no more re-identifications can be made

because one of two conditions is satisfied: either (1) the

track with incomplete trails has no more trails to process
or (2) there are no re-identifications made in the current

iteration.

REIDIT-I can generate the four possible results for

two arbitrary trails trail(N,n) and trail(P,p), as shown in
f REIDIT-I, with an efficient data structure.



Table 2

Classification of re-identifications made by REIDIT-I

Re-identification No re-identification

trail(N, n)

6trail(P, p)
Correct match False non-match

Not(trail(N, n))

6trail(P, p)
False match Correct non-match

The first and second rows of the contingency table correspond to

outcomes for when the subtrail property is satisfied and not satisfied,

respectively. Light-shaded cells are possible outcomes and the dark-

ened cell is an impossible outcome.
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Table 2: (1) correct match, (2) correct non-match, (3)

false non-match, and (4) false match. The first three can

occur, while the last is impossible. The reasoning is as

follows. One of the main assumptions of the reserved-

release model is that trails in N are incomplete, which

means that only the 1�s of the trails can be trusted.

Regardless, it must be true that for an arbitrary trail in

N, there must exist a non-null set of supertrails in P. If
the set of supertrails is of size one, then this must be a

correct match. In the event that there are multiple sub-

trails no re-identification will be made in the current

iteration. Yet, in the current, and subsequent iterations,

the set size may be reduced. The minimum set size is

equal to 1, since there must exist at least one supertrail

for the trail in question. When the set size does equal 1,

then a correct re-identification will be made. If the set
size cannot be reduced to 1, then a false non-match will

occur. In the case that trail(N,n) is not a subtrail of

trail(P,p), it is not possible for a re-identification to be

made. Thus, for any two trails trail(N,n) and trail(P,p),
where trail(N,n) is not a subtrail of trail(P,p), only true

non-matches will be recorded.

For a complexity analysis of REIDIT-I, let N be re-

served to P. From a computational standpoint, the
REIDIT-I algorithm is the basic structure of REIDIT-C

with an additional outer loop. Thus, by a simple ex-

tension to the complexity proof of REIDIT-C, we can

potentially iterate jNj times, and it appears that the

complexity of REIDIT-I is O(jNj2 d jPj). However, we

can abstract information in such a way that the com-

plexity can be reduced to O(jNj d jPj). This method we

call REIDIT-I-Fast and which is depicted in Fig. 4.
Consider an adjacency matrix Z of size jNj � jPj,

where each cell Z[n,p] has a value of 1 if trail(N,n) 6trail

(P,p). In addition, let S be a column vector of size jNj
where each cell is the rowsum of Z. Construction of the

matrix and vector occurs in approximately O(jNj d jPj)
steps. In the do-while loop, theworst-case scenario occurs

when each iteration yields one re-identification, thus

taking jNj iterations.Within the loop, a sequential scan of
the S vector takes place in jNj steps. If a unique re-iden-

tification is found, realized when S[x] is 1, then a scan of

one row of the Z matrix occurs using the inner for loop;

this takes jPj steps.When cellZ[x,y] with value 1 is found,
the found column inZ and theS vector are updatedwith a
scan taking jNj steps. Since, in worst case there is only one
re-identification per do-while iteration, this process only

occurs once per iteration. Thus, the total number of steps

for the while loop and its internal processes is approxi-

mately jNj d (2 d jNj þ jPj), which is approximately

O(jNj2 þ jPj d jNj). Therefore, the order of complexity

will be O(setup) + O(scanning) and since jPjP jNj, com-

plexity is O(jNj d jPj).

4.3. Upper bounds

Since a trail is vector of Boolean values, the set of

trails can be discussed in terms of binary strings. For

both REIDIT-C and REIDIT-I, the maximum number

of trail re-identifications is dependent on the number of

permutations of a binary string. Let C be the set of data
releasing location and P be the identified track. The

maximum number of trail re-identifications is bounded

by the minimum of jPj and 2jCj � 1. When jPj6 2jCj � 1,

then the maximum number of trail re-identifications is

bounded by jPj, which is the number of distinct patients

in the considered population. This implicates that all

trails may be re-identified. When jPj > 2jCj � 1, the

maximum number of trail re-identifications is bounded
by the number of different binary location visit patterns

that can be generated from jCj locations.
5. Experiments

Though in theory the re-identification limits of REI-

DIT-C and -I scale exponentially, this does not typically
occur in the real world. A main contributing factor is

that people do not visit locations in a random manner.

On the contrary, many healthcare factors influence

where an individual leaves data behind. For example,

many hospitals have referral programs, such that there

is non-trivial correlation between the visits of several

hospital visits. Moreover, people tend to visit hospitals

that are within close proximity to their residence. A
hospital that is situated in the middle of a city will see

more patients than a hospital in a rural setting. In ad-

dition, certain hospitals offer specialized care or treat-

ment for particular diseases. Given these, and additional

idiosyncrasies of the real world, REIDIT must be eval-

uated with real health data.

5.1. Description of real-world data

The dataset used for evaluation consists of publicly

available hospital discharge data from the State of Illi-

nois, for the years 1990–1997. There are approximately

1.3 million hospital discharges per year and collection

has compliance with greater than 99% of discharges

occurring in hospitals in the state [22]. Typical discharge
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data are made up of demographic and clinical infor-
mation. The demographic data include date of birth,

gender, zip code of residence, and hospital visited, while

clinical information per patient visit includes a set of one

to nine International Classification of Disease, Version 9

(ICD-9) codes and procedure codes.

From the discharge databases, longitudinal medical

profiles for patients diagnosed with genetic disorders

were constructed as follows. First, the set of patients
that were diagnosed with a single gene disease was de-

termined. A patient was represented by a distinct com-

bination of the demographic values {date of birth,

gender, and five digit zip code}. Next, the databases were

requeried with the previous demographic data to append

additional clinical information from other hospital vis-

its. Profiles were then probabilistically merged based on

census demographics for {age, gender, zip code}, such
that profiles likely to relate to the same person were

combined. The uniqueness of patient identities making

up profiles was 98–100% based on census data as re-

ported previously [20]. Demographic data are consid-

ered to be identifying information, since each unique

patient can be re-identified by simple linkage on demo-

graphics to publicly available identified data, such as

voter registration lists [13,19,21]. In prior research we
discovered that standard ICD-9 codes leak DNA-related

data [23], such as genetic disorders and gender. We

utilize both of these features in our analysis.

5.2. Re-identifiability with REIDIT-C

Eight populations afflicted with single gene disorders

are analyzed. These populations are cystic fibrosis (CF),
Friedrich�s Ataxia (FA), hereditary hemorrhagic tele-

ganictasia (HT), Huntington�s disease (HD), phenylke-

tonuria (PK), Refsum�s disease (RD), sickle cell anemia

(SC), and tuberous sclerosis (TS). Though more com-

mon diseases have less well-defined genotype–phenotype

relations, this does not diminish the fact that both DNA

and identified data form trails of data left behind. Trail

re-identification does not require a known relationship
between the DNA and the phenotype, since the methods

are independent of specific genotype–phenotype rela-

tionships. The trail problem only requires that DNA

and identity be tracked over multiple locations. The

reasoning behind the use of rare diseases for algorithm

analysis is for the construction of multiple datasets for

testing. In this respect, our use of such subpopulations

are neither exaggerated nor contrived. It is true that if
trail re-identification was performed over genomic data

collected on individuals with more complex, or poly-

genic, genetic diseases, then we could not use such a

blocking strategy to add the additional classifying in-

formation of which specific disease a genomic data

sample, or a health information, corresponds to. How-

ever, since one of the main goals of biomedical research
is to learn and formally characterize these complex ge-
notype–phenotype relationships, then trail re-identifi-

cation for these diseases will become akin studies we

have performed on rare diseases.

To evaluate re-identification with REIDIT-C, we

make the following assumption about patient data. It is

assumed that if a discharge profile specifies a patient

made a visit to a particular hospital, then both clinical

and DNA data are released by the hospital about the
patient. REIDIT-C was used with the set of profiles for

each of the eight populations and gender-specific sub-

populations. As specified in the previous section, all re-

identifications returned by REIDIT-C are a correct

match. The results are presented in Table 3.

Since, the number of patients, for each population, is

less than two to the number of total hospitals visited, the

maximum number of re-identifications in theory is the
number of patients. However, the observed number of

re-identifications only achieves this maximum for the

RD population, where there is only one patient with the

disease at each of the hospitals considered. For the re-

maining populations, it appears that healthcare factors

have a profound effect on the uniqueness of trails. A

quick inspection reveals that the re-identifiability of

these populations is related to the average number of
patients visiting a hospital. This effect is graphically

depicted in Fig. 5. It is apparent that as the number of

people per hospital increases, the more difficult it is for

re-identifications to occur. This phenomenon is due, in

part, to the fact that an increase in population size, over

a fixed set of locations, increases the probability that

multiple patients will have the same trail. The average

number of patients per hospital is a gross measure of re-
identification. There are additional features about the

environment that affect the re-identifiability of a popu-

lation, which we expect to explore in future studies.

The belief that each location in a health environment

will collect and release genomic data may be unrealistic

given the current state of the healthcare market. Though

such an environment may exist in the future, we must

consider a more fine-grained perspective by analyzing
how particular locations and sets of locations can affect

the re-identifiability of patients in a population. It is

more realistic that only a fraction of hospitals will be

releasing genomic data about patients. As exemplified in

Fig. 5, the number of patients per location affects re-

identifiability. Yet, this does not indicate which loca-

tions have an effect. To answer this question, we study

the effect of location popularity on re-identifiability of a
population. We investigate the case where a certain set

of locations are releasing data. More specifically, as can

be seen in Fig. 6, we consider an environment where an

increasing number of hospitals participate in unreserved

data sharing. We compare the re-identifiability for CF,

where the number of patients per location is relatively

large (�11.92), to PK, where the average is closer to a



Table 3

Summary of the percentage of actual re-identifications made by REIDIT-C for different genetic disease patient populations

Disease Gender Number of

patients

Number of

hospitals

Average number of

patients per hospital

% Re-identified

CF 1149 174 11.92 32.90

Female 557 142 7.28 43.09

Male 592 150 6.94 39.36

FA 129 105 2.08 68.99

Female 60 68 1.47 80.00

Male 69 72 1.65 78.26

HD 419 172 4.37 50.00

Female 236 149 2.76 79.14

Male 183 127 2.70 50.63

HT 429 159 4.83 52.21

Female 244 140 3.06 64.34

Male 185 114 2.98 63.24

PK 77 57 2.15 75.32

Female 52 48 1.85 80.77

Male 25 25 1.36 80.00

RD 4 8 1 100.00

Female 2 4 1 100.00

Male 2 4 1 100.00

SC 7730 207 88.89 37.34

Female 4175 189 55.87 43.76

Male 3555 191 41.01 36.51

TS 220 119 3.82 51.60

Female 97 88 2.60 78.35

Male 123 87 2.60 61.79

Fig. 5. REIDIT-C re-identification of populations as a function of the

average number of people per location. Each genetic disease popula-

tion has three data points in the graph: genderless, males only, and

females only.
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single individual per location (�2.15). Each hospital is

ranked by the number of distinct patients visiting the

location. A total rank ordering of the locations was

achieved by randomly ordering locations with the same

number of patients.
Given a set of locations from highest rank, or down

to a particular rank x, we measured the re-identifiability

of the trails that were discovered (i.e., non-null trails

over the set of locations ranked 1 to x). For both CF

and PK, the rate of trail discovery is logarithmic as can
be seen in Fig. 6. The r2 correlation coefficients for fit

curves were 0.92 and 0.97, respectively. However, while

the rate of trail re-identification for CF is logarithmic,

the rate for PK is linear. It appears that this is an artifact

of the slope in the logarithmic discovery rate. The slope
of trail discovery for CF is much greater than for PK.

This implies that most individuals visited the more

popular locations for CF, while for PK patients are

more dispersed in hospitals.

One would expect that incorporation of less popular

locations would make re-identification easier and that

more popular locations would make re-identification

more difficult. To evaluate this claim, we added loca-
tions in reverse rank, and measured the re-identifiability

of the non-null trails constructed from the contributing

locations. We find that for the first quarter of reverse

rank websites, almost all patients in the population are

re-identified. This is due to the fact that for most of these

hospitals, the number of patient trails found and the

number of re-identifications increase approximately

linearly with slope equal to 1. This means that at these
locations, usually only one patient existed at the hospital

with the disorder. Thus, the first part of our hypothesis

is true. After the first quarter locations, the re-identifi-

cation rate for PH remains linear, with a slightly lower

rate than the rate of trail discovery. However, the trail



Fig. 6. REIDIT-C re-identification as a function of hospital rank by visit popularity; (first row) in order, (second row) reverse order. Hospital visit

popularity is measured as the total number of unique visiting patients. The higher the order in the rank, the greater the popularity of a location. The

‘‘discovered’’ curve is the number of unique identified patients and unique DNA samples found in the set of locations up to rank x. The ‘‘re-

identified’’ curve is the number of re-identifications made in the trails constructed over the set of considered locations. The ‘‘theoretical’’ curve is the

maximum number of trails that could be re-identified given the number of locations and the number of trails observed.

Fig. 7. Re-identification of CF incomplete trails with REIDIT-I as an increasing amount of identifying information is withheld from the release.

From left to right: 0.0, 0.1, 0.5, and 0.9 probability of withholding. The ‘‘identified’’ and ‘‘DNA’’ curves correspond to the number of unique

identified patients and unique DNA samples, respectively, discovered in the set of locations up to rank x. The ‘‘re-identified’’ curve represents the

number of DNA samples re-identified to identified patients.
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discovery rate for CF becomes exponential, and subse-
quently, after a delay, so too does the CF trail re-iden-

tification rate. This is due to the fact that as the number

of people per location increases, the ability to distin-

guish a larger number of trails increases as well.

5.3. Re-identifiability with REIDIT-I

For analysis of REIDIT-I, we continue with the CF
population profiles from above. The CF complete trails

were used to generate incomplete trails for analysis of

the REIDIT-I algorithm. To do so, we utilize a simple

model of how locations create reserved releases. Each

location withholds identifying information on a patient

with the same probability p. Thus, the track of complete

information consists of identified clinical data trails and

the track of incomplete information consists of genomic
data trails. We varied the probability of information

being withheld and attempted re-identification with

REIDIT-I. As specified in the previous section, all re-

identifications returned by REIDIT-I are a true match.

Graphs of the results for p equal to 0, 0.1, 0.5, and 0.9

are shown in Fig. 7. Each point of a graph depicts the

average result for 10 experiments of random informa-

tion withholding.
As the probability of withholding information in-

creases, the probability that an individual will not show

up at all (i.e., no trail generated) in the population of

incomplete trails. Thus, in the graphs we show three

lines. The topmost line represents the number of non-

null identified clinical data trails for a given set of

hospitals. The middle line represents the number of

non-null genomic data trails. And the lowest line
represents the number of genomic data trails that were

re-identified. As expected, we find that as the amount of

information withheld increases, the number of releasing

locations necessary to perform re-identification in-

creases as well. This is due to the fact that as additional

information is withheld, the incomplete trail becomes

less complex and informative. However, even though

trails become less complex, there remains a significant
disposition toward re-identification. This is observable

even after 50% of a trail is obscured. We find that there

is an inverse relationship between the slope of re-iden-

tification (as a function of website rank) and the amount

of information withheld.
6. Discussion

Appearances can be deceiving. This concept has been

uttered by countless people in many different eras, but it

characterizes genomic data as well. Simply because ge-

nomic data are de-identified or pseudonymized does not

mean that anonymity can be assumed. It is necessary

that features about the data, as well as the environment
in which the data are shared, are taken into account
before data can be declared as anonymous. The REI-

DIT algorithms described in this paper are a prime ex-

ample of how and why techniques that function in one

environment, such as the use of encryption to protect

security, cannot be blindly relied upon to protect ano-

nymity.

6.1. Privacy protection systems testing

Though privacy protection schemas do not explicitly

model protection against trail re-identification, not all

schemas are susceptible to the attack. In this section, we

analyze and compare two protection models and their

susceptibility to trails. The first system, proposed by de

Moor et al. [9], is susceptible, while the second, pro-

posed by deCODE Genetics [6], is not. Various privacy
protection schemas have been published and deployed

for genomic data. These methods utilize protections

such as encrypted pseudonyms provided by trusted third

parties [6,9] or de-identification of explicit identifiers

[8,21,24]. Each claims that it protects the privacy of the

data subjects. While advocates of such techniques rec-

ognize that there exist re-identification threats from in-

ferences about data itself [9], they deem such threats as
minimal and unjustifiable as an impediment to research.

Our experimental results demonstrate otherwise; the re-

identification risk of de-identified data is non-trivial.

One susceptible model has been proposed by de Moor

et al. [9]. In this model, a set of data holders, such as a

set of hospitals, transfer data to a central repository

maintained by a trusted third party. Both parties en-

crypt the identifying information associated with the
DNA data. For a set of locations A, B, . . ., Z, the

trusted third party maintains a set of datasets

fA�ðgðfAðIdentityAÞÞ, DNAÞ, B�ðgðfBðIdentityBÞÞ, DNAÞ,
. . ., Z�ðgðfZðIdentityZÞÞ, DNAÞg, where g is the encryp-

tion function of the trusted party, fi is an encryption

function for location i, and Identityi is the set of identi-

fying attributes used by location i for the encrypted

pseudonym. When a new researcher requests sTTP for
data, sTTP supplies the appropriate set of doubly en-

crypted lists. This method protects direct access to the

identity of the individual, but completely neglects the

DNA data. A DNA track can easily be constructed

from the released information. When identified clinical

information is subsequently shared, an identified track

can also be constructed. With a DNA track and an

identified track structured from multiple locations, trail
re-identification can be conducted. It should be noted

that masking the identity of the data location does not

necessarily prevent trail re-identification. For example,

in Fig. 8, an unreserved release is made, but the DNA

datasets do not have locations explicitly listed. Thus, the

ordering of bits in trails for the identified and DNA

tracks are not necessarily the same. Regardless, a correct



Fig. 8. (Left) Unreserved releases where locations are not identified. The subscripts A, B, and C for identified tables have no explicit correlation with

subscripts 1, 2, and 3 of the DNA tables. (Right) Resulting identified (P) and DNA (N) tracks. Re-identifications are made through uniqueness in the

number of locations visited.
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match on trails can be made by using the number of

locations visited.
The third party model can be protected against trail

re-identification. One way to group information is to

construct a protected dataset by taking the distinct un-

ion of all locations� data. In effect, this removes the data

requester�s ability to discern not only the identity of the

location the data were derived from, but how many lo-

cations held the data. This way, a DNA sample, such as

‘‘cttg. . .a’’ in Fig. 8, would be identical in the location-
based trail as all other DNA samples. However, though

this is a technical solution, it may not be a feasible op-

tion for the participating locations. For example, there

exist intellectual property (merging issue as well) and

research culture issues that make the creation of a cen-

tralized repository very difficult. One reason why

grouping may not be feasible is that in many cases,

DNA data are not the only information shared. There
are additional data that must be taken into account,

since the most common use of DNA in the research and

clinical realm is for association studies, such as complex

phenotype correlation and pharmacogenomics. For this

reason, DNA is often accompanied by additional in-

formation in the form of some phenotypic or metabolic

observation.

In contrast, the privacy protection model proposed
by deCODE Genetics [6] of Iceland is not susceptible to

trail re-identification. The general overview of the model

is as follows. deCODE researchers determine, with the

assistance of physicians that attend to the general pop-

ulation, a set of individuals of research interest. The set

of participating patients donate a blood sample at a

facility run by the Data Protection Commission (DPC)

of Iceland. The patients� Social Security Number is en-
crypted (using strong encryption) into a pseudonym,

and is forwarded with the sample onto deCODE. In this

system, an individual�s clinical information is distributed

and annotated with location information from multiple

locations, thus an identified track can be constructed.

However, an individual�s DNA is collected and anno-
tated with one location only. Even if there are multiple

locations run by the DPC for data collection, each in-
dividual�s DNA trail will have a solitary location. Thus,

the only susceptibility this system reveals to trail re-

identification is when a single individual visits only one

DPC location.

Protection against trail re-identification does not

imply that the protection model is impregnable to re-

identification. In the following section, we briefly discuss

additional susceptibility tests that can be employed.

6.2. Alternative re-identification models

Obviously, the REIDIT algorithms do not re-identify

all genomic data samples. But does this guarantee that

the unidentified data are anonymous? While it would be

nice to unequivocally proclaim yes, this would be ex-

tremely na€ıve. While the REIDIT algorithms provide a
single model of how re-identification can occur in a

distributed environment, trail re-identification is not the

only manner by which genomic data can be re-identified.

An earlier re-identification model we introduced utilizes

features about the genomic data [15] and simple rela-

tionships that may exist between DNA and clinical in-

formation (i.e., this sample contains a mutation for

cystic fibrosis). Currently, one of the main focuses of
research in personalized medicine is the study of how

variation in an individual�s genome affects their clinical

phenotype [1,25]. Though useful for research and clini-

cal healthcare purposes, these same relationships also

pose challenges to personal privacy.

For example, in previous work we demonstrated that

specific DNA sequences of an individual�s genomic data

could be inferred from publicly available longitudinal
clinical information [15]. In the study, we utilized a

subset of the patient profiles of the Huntington�s dis-

ease patients described previously. The identities of

Huntington�s disease patients were determinable. The

relation of each person�s genomic information to their

publicly available clinical information proceeds as
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follows. Through an intelligent model we were able to
determine a small bound for the age of onset of the

disease for the patients. Since there is a strong correla-

tion between the age of onset and the size of the CAG

repeat mutation that causes Huntington�s disease, we

were able to correctly infer the CAG repeat for 19 of 22

patients in the study. It is feasible that the models we

utilized, or other models [13,14], could be employed to

infer the genomic information of individuals diagnosed
with other genetic diseases and thereby re-identify the

genomic information.

6.3. Limitations and future research

Though the REIDIT algorithms provide correct re-

identifications, they are limited by their assumptions.

First, in the reserved release model assumes that only one
of the data types is reserved. If one location withholds

genomic data, then all locations withhold genomic data.

Yet, if one location withholds genomic data, and a dif-

ferent location withholds identified data, then both con-

structed tracks will consist of incomplete trails. In this

scenario, trails from either track can have their 0�s can be

truthfully flipped to 1�s in. The deterministic REIDIT-I

algorithm cannot handle such a scenario. Use of the
REIDIT-I algorithm can result in an increased number of

false negatives or missed re-identifications. Even worse,

REIDIT-I may cause false re-identifications, which un-

der the current error-free model is impossible to achieve.

Second, the model assumes that the released data are

error-free. However, this may not be the case. In certain

cases, typographical errors or false recordings of infor-

mation in a database may occur. In this situation, not
only can a 0 in a trail be flipped to a 1, but a 1 in a trail

can correctly be flipped to a 0. Again, the REIDIT-I

algorithm can miss and cause false re-identifications.

In light of these deficiencies, we are developing more

robust trail re-identification algorithms. One possible

direction is the development of trail re-identification

methods based on record linkage models. Record link-

age has been used in the biomedical community to link
records from one database to records from another

database. In [26], a deterministic record linkage model is

proposed, where feature selection of the best linkage

attributes is determined. More complex record linkage

models incorporate probabilistic models to account for

typographical error [27,28]. For instance, ‘‘John H.

Smith’’ in Database 1 and ‘‘Jon H. Smitth’’ in Database

2 may both be the same individual, but neither John and
Jon, nor Smith and Smitth, are equivalent. Variations

on these probabilistic methods may be useful for de-

signing new trail matching models. For example, con-

sider a simple reserved release: an identified track with

two trails, s1[1,0,1] and s2[0,1,1], and a DNA track with

two trails, t1[0,0,1] and t2[1,1,1]. If each location has an

equal amount of error in their released data, then no
matches of identified to DNA trails can be made; both s1
and s2 differ from t1 and t2 by 2 bits. However, when the

first location is known to have a high rate of data error

and the remaining locations have little or no error, then

it is more probable that s1 and t1 correspond to the same

entity, and similarly for s2 and t2. Granted, the ability to

make such a decision must be made in the context of the

set of all trails in the tracks.
7. Conclusion

In this research, we proved that genomic data can

often be re-identified in a distributed health environ-

ment. We developed and evaluated several algorithms,

collectively termed RE-Identification of Data in Trails
(REIDIT), that re-identify through the use of unique

features in the sets of locations that patients visit. The

REIDIT algorithms demonstrate that anonymity pro-

tection techniques neglecting to incorporate both com-

putational and healthcare factors can be susceptible to

re-identification. Moreover, the development of our

models in a computational manner shifts the problem of

anonymity analysis from ad hoc methods into a formal
setting. In the future, to evaluate anonymity protocols it

necessary that researchers attack the problem with

context dependent aspects in mind. With formal models,

privacy protection methods can be tested against the

current array of re-identification techniques, such as

trail re-identification, to certify anonymity and thereby

guarantee patient privacy.
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