
Abstract
Data de-identification reconciles the demand for release of
data for research purposes and the demand for privacy
from individuals. This paper proposes and evaluates an
optimization algorithm for the powerful de-identification
procedure known as -anonymization. A -anonymized
dataset has the property that each record is indistinguish-
able from at least others. Even simple restrictions of
optimized -anonymity are NP-hard, leading to significant
computational challenges. We present a new approach to
exploring the space of possible anonymizations that tames
the combinatorics of the problem, and develop data-man-
agement strategies to reduce reliance on expensive opera-
tions such as sorting. Through experiments on real census
data, we show the resulting algorithm can find optimal -
anonymizations under two representative cost measures
and a wide range of . We also show that the algorithm
can produce good anonymizations in circumstances where
the input data or input parameters preclude finding an
optimal solution in reasonable time. Finally, we use the
algorithm to explore the effects of different coding
approaches and problem variations on anonymization
quality and performance. To our knowledge, this is the first
result demonstrating optimal -anonymization of a non-
trivial dataset under a general model of the problem.

1. Introduction
Industries, organizations, and governments must satisfy

demands for electronic release of information in addition to
demands of privacy from individuals whose personal data
may be disclosed by the process. As argued by Samarati
and Sweeney [11], naive approaches to de-identifying
microdata are prone to attacks that combine the data with
other publicly available information to re-identify repre-
sented individuals. For example, consider a dataset of
patient diagnoses that has been “scrubbed” of any personal
identifiers such as name or social security number. While
no record contains any single identifying value, many
records are likely to contain unique value combinations.
Imagine for instance a represented individual who is the
only male born in 1920 living in some sparsely populated
area. This individual’s age, gender, and zip code could be
joined with a voter registry from the area to obtain his
name, revealing his medical history.

To avoid such so-called linking attacks while preserving
the integrity of the released data, Samarati and Sweeney
have proposed the concept of -anonymity [11]. A -ano-
nymized dataset has the property that each record is indis-
tinguishable from at least other records within the
dataset. The larger the value of , the greater the implied
privacy since no individual can be identified with probabil-
ity exceeding through linking attacks alone.

The process of -anonymizing a dataset involves apply-
ing operations to the input dataset including data suppres-
sion and cell value generalization. Suppression is the
process of deleting cell values or entire tuples. Generaliza-
tion involves replacing specific values such as a phone
number with a more general one, such as the area code
alone. Unlike the outcome of other disclosure protection
techniques that involve condensation [1], data scrambling
and swapping [6,7], or adding noise [2], all records within
a -anonymized dataset remain truthful.

De-identifying data through common formulations of
-anonymity is unfortunately NP-hard if one wishes to

guarantee an optimal anonymization [8]. Algorithms that
are suitable for use in practice typically employ greedy
methods [6,13] or incomplete stochastic search [5,16], and
do not provide any guarantees on the quality of the result-
ing anonymization.

We propose a practical method for determining an opti-
mal -anonymization of a given dataset. An optimal anon-
ymization is one which perturbs the input dataset as little as
is necessary to achieve -anonymity, where “as little as is
necessary” is typically quantified by a given cost metric.
Several different cost metrics have been proposed
[5,6,10,14], though most aim in one way or another to min-
imize the amount of information loss resulting from the
generalization and suppression operations that are applied
to produce the transformed dataset. The ability to compute
optimal anonymizations lets us more definitively investi-
gate the impacts of various coding techniques and problem
variations on anonymization quality. It also allows us to
better quantify the effectiveness of stochastic or other non-
optimal methods.

We perform experiments to illustrate the feasibility of
our approach. We demonstrate that despite the problem’s
inherent hardness, provably optimal -anonymizations can
be obtained for real census data under two representative
cost metrics -- in most cases within only a few seconds or

k k

k 1–
k

k

k

k

k k

k 1–
k

1 k⁄
k

k

k

k

k

k

Data Privacy Through Optimal k-Anonymization

Roberto J. Bayardo
IBM Almaden Research Center

bayardo@alum.mit.edu

Rakesh Agrawal
IBM Almaden Research Center

rakesh_agrawal@ieee.org

minutes. Some parameter settings (specifically, very small
values of) remain challenging; but even under these con-
ditions, the algorithm can still be used to produce good
solutions very quickly, and constantly improving solutions
throughout its execution. This anytime quality allows it to
be used to obtain good anonymizations even when an opti-
mal anonymization is out of reach.

Our algorithm departs from previous proposals in a vari-
ety of ways. First, previous proposals [6,10,13] suggest
starting from the original dataset and systematically or
greedily generalizing it into one that is -anonymous. Our
algorithm instead starts with a fully generalized dataset
(one in which every tuple is identical to every other) and
systematically specializes the dataset into one that is mini-
mally -anonymous. While this choice may seem arbi-
trary, it is in fact an essential ingredient to the approach.
Second, our algorithm uses a tree-search strategy exploit-
ing both cost-based pruning and dynamic search rearrange-
ment. These techniques have proven successful in data-
mining and machine learning domains [3,9,15], but to our
knowledge have not been applied to the problem of -ano-
nymization. Third, we propose novel data-management
strategies to reduce the cost of evaluating a given anony-
mization. Computing the cost of a -anonymization can
involve scanning if not sorting the entire input dataset. We
show how sorting and scanning costs can be dramatically
reduced. Combined, this suite of techniques allow signifi-
cant reduction in data management overhead as well as a
taming of the combinatorial state explosion. For example,
the census dataset used in our experiments has a state-
space size of . Despite this, our algorithm identifies a
provably optimal -anonymization after exploring only on
the order of up to a few hundred thousand states. Other
optimal algorithms proposed in the literature are suitable
only for input datasets with trivially small domains.

2. Related Work
While there are several -anonymization algorithm

proposals in the literature [5,6,8,10,12,13,16], only a few
are suitable for use in practice. Iyengar [5] shows how to
attack a very flexible (and highly combinatorial)
formulation of -anonymity using a genetic algorithm. The
algorithm may run for hours, and because it is an
incomplete stochastic search method, it cannot provide any
guarantees on solution quality. The -argus algorithm of
Hundpool and Willenborg [6] computes the frequency of
all 2 and 3-value combinations of dataset values, then
greedily generalizes values and suppresses outliers in order
to achieve -anonymity. The datafly approach of Sweeney
[12] is another greedy approach that generates frequency
lists and iteratively generalizes those combinations with
less than occurrences. Like incomplete stochastic
approaches, iterative greedy approaches such as -argus
and Datafly offer no solution quality guarantees. Sweeney
[12] and Samarati [10] have both proposed complete algo-
rithms for -anonymization. Sweeney’s algorithm exhaus-
tively examines all potential generalizations to identify the
optimal (or “preferred”) generalization that minimally sat-

isfies the anonymity requirement, acknowledging the
approach is impractical even on modest sized datasets.
Samarati proposes an algorithm to identify all “k-minimal”
generalizations, among which reside the optimal k-anony-
mizations according to certain preference criteria. While
the algorithm exploits binary search and a monotonicity
property on the generalization lattice to avoid exhaustively
searching the entire generalization space, the number of k-
minimal generalizations itself remains exponential and can
easily become too large to enumerate efficiently.

Winkler [16] has proposed using simulated annealing to
attack the problem but provides no evidence of its efficacy.
On the more theoretical side, Meyerson and Williams have
recently proposed an approximation algorithm that
achieves an anonymization within of optimal.
The method remains to be tested in practice. The table
below summarizes this set of known approaches to the
problem in terms of practicality and solution guarantees.

3. Preliminaries
A dataset is a multi-set of tuples each com-

prising a sequence of values . The set of
values that may appear in position of a tuple is called the
domain for attribute , and is denoted .

The problem of (k-)anonymizing a dataset has been for-
malized in a variety of ways. In some formulations
[6,8,14], anonymization is achieved (at least in part) by
suppressing (deleting) individual values from tuples. In
others [5,10,14], every occurrence of certain attribute val-
ues within the dataset is replaced with a more general value
(for example, the zip codes 95120-95129 might be replaced
with 9512*). Some generalization based formulations also
allow entire tuples to be suppressed to avoid excessive gen-
eralization due to outliers [5,10].

The exact way values can be generalized also differs
among formulations. Iyengar [5] provides a flexible gener-
alization model based on imposing an order on the attribute
domains (if one is not already implicit or explicit) and

k

k

k

k

k

2162

k

k

k

µ

k

k
µ

k

Algorithm Practical? Guarantee

Sweeney-Datafly Y none

Sweeney-MinGen N optimal

Samarati-AllMin N optimal

Iyengar-GA Y none

Winkler-Anneal possible none

Meyerson-Approx possible, but only

for small using
suppression alone

 of
optimal

our proposal Y optimal

Table 1. A breakdown of known approaches to k-Anonymity.

O klogk()

k
O k klog()

D t1…tn
m v1 v2 … vm, , ,〈 〉

i
i Σi

allowing generalizations defined by partitionings that
respect the ordering. Iyengar shows that generalization
models based on value hierarchies [10,14] map to this
approach, though hierarchies effectively impose additional
constraints on the particular partitionings that may be con-
sidered. Flexible value generalization schemes such as
Iyengar’s provide more choice in anonymizing the data,
which can result in better information preservation. But
such choice comes at the cost of a significant increase in
the number of allowable states that must be searched to
identify an optimal or near-optimal solution. Nevertheless,
because the value generalization formalization of Iyengar
encompasses and extends many others (with the exception
of those involving cell level suppression), we adopt his
framework in this paper.

An attribute generalization for an attribute with ordered
value domain is a partitioning of the attribute domain
into intervals such that every value of
appears in some interval, and every value in an interval
precedes every value in the intervals following . For
example, a generalization of an “age” attribute that ranges
over ages [1],[2],..,[30] might be

. For purely categorical
domains, the domain ordering must be supplied by the user.
As Iyengar notes, should a generalization hierarchy be
available, this ordering should correspond to the order in
which the leaves are output by a preorder traversal of the
hierarchy. An attribute generalization can be applied to a
value within the domain of the attribute, denoted by

, to return the interval in which belongs.
We will denote each interval within an attribute general-

ization with the least value belonging to the interval. This
allows specifying attribute generalizations much more suc-
cinctly. For example, the age generalization from the para-
graph above is specified as . Together with the
ordered attribute domain, this representation is complete
and unambiguous.

An anonymization of a dataset set is a set of attribute
generalizations consisting of exactly one gener-
alization per attribute of . These generalizations are said
to transform into a new dataset

where value denotes the th value of tuple from
dataset . More intuitively, an anonymization injectively
maps each and every value in the original dataset to a new
(generalized) value. In practice a database may also consist
of columns that need not be subject to generalization. For
instance data that has never before been disclosed publicly
cannot be used in linking with outside data sources and
may in some cases be exempted from the anonymization
process. We assume without loss of generality that each
and every column contains potentially publicly linkable
information and must therefore be generalized to achieve
anonymity.

In transforming a dataset , an anonymization is said to
induce new equivalence classes of tuples that are defined
by applying the tuple equality operator over transformed
tuples. Put another way, each induced equivalence class

consists of a maximal set of tuples that are equivalent
within the transformed dataset.

DEF 3.1: (K-ANONYMIZATION WITHOUT SUPPRESSION) A
-anonymization of a dataset is an anonymization of
 such that the equivalence classes induced by the

anonymization are all of size or greater.

We also say that a (transformed) dataset is -anony-
mized if every equivalence class of tuples is of size or
greater.
3.1 Modeling Tuple Suppression

In some cases, outliers in a dataset may necessitate sig-
nificant generalization in order to achieve a -anonymiza-
tion, resulting in unacceptable information loss. To fix this
situation, we may choose to suppress outlier tuples by
deleting them. More formally, given an anonymization
of dataset , we say -transforms into the dataset

 where is the result of:
(1) transforming into using as defined before,
followed by,

(2) deleting any tuple from belonging to an induced
equivalence class of size less than .

Note then that any -transformed dataset is always -
anonymized. An anonymization is said to -suppress (or
just suppress when is clear from the context) those tuples
removed from to form .
3.2 Problem Statement

The problem of -anonymity is not simply to find any
-anonymization, but to instead find one that is “good”

according to some quantifiable cost. The problem of opti-
mal -anonymity is to find one that is known to be “best.”

More precisely, when suppression is allowed, we are
searching for an anonymization that produces the “best” -
transformed dataset, as determined by some cost metric.
Such an anonymization is said to be optimal. Since -ano-
nymization without suppression can be modeled in the sup-
pression-based framework by imposing an infinite cost
whenever suppression is required, from here on we focus
on the case where suppression is allowed. We will note
specific impacts of the suppression-free case where appro-
priate.
3.3 Modeling Desirable Anonymizations

Each of the works cited earlier provides its own unique
metrics for modeling desirable anonymizations. Our algo-
rithm is for the most part metric agnostic. We propose it in
a manner whereby it can be instantiated to use a particular
metric by defining a simple cost-bounding function. To
keep the presentation concrete, we will show how cost-
bounding is accomplished with two example metrics. The
strategies used should be easily adaptable to other metrics,
which are almost all variants of the two considered here.

Cost metrics typically tally the information loss result-
ing from the suppression or generalizations applied. Each
anonymization can thus be thought of as imparting a “pen-
alty” on each tuple that reflects the information loss associ-
ated with its transformation or suppression. Naturally, most

Σ
I1 I2 … Io, , ,〈 〉 Σ

Ij
Ij

1 10,[] 11 20,[] 21 30,[], ,〈 〉

a
v

a v() v

1 11 21, ,{ }

D
a1…am{ }

D
D D' =

a1 v1 1,() … am v1 m,(), ,〈 〉 … a1 vn 1,() … am vn m,(), ,〈 〉, ,
vi j, j i

D

D

k D
D

k

k
k

k

g
D g k D

D'' D''
D D' g

D'
k

k k
k

k
D' D''

k
k

k

k

k

cost metrics will penalize a suppressed tuple at least as
much as any generalization of the tuple.

The first metric we use is one that attempts to capture in
a straightforward way the desire to maintain discernibility
between tuples as much as is allowed by a given setting of

. This discernibility metric assigns a penalty to each tuple
based on how many tuples in the transformed dataset are
indistinguishable from it. If an unsuppressed tuple falls into
an induced equivalence class of size , then that tuple is
assigned a penalty of . If a tuple is suppressed, then it is
assigned a penalty of , the size of the input dataset. This
penalty reflects the fact that a suppressed tuple cannot be
distinguished from any other tuple in the dataset. The met-
ric can be mathematically stated as follows:

In this expression, the sets refer to the equivalence
classes of tuples in induced by the anonymization .
The first sum computes penalties for each non-suppressed
tuple, the second for suppressed tuples.

Another interesting cost metric we use was originally
proposed by Iyengar [5]. This metric can be applied when
tuples are assigned a categorical class label in an effort to
produce anonymizations whose induced equivalence
classes consist of tuples that are uniform with respect to the
class label. This classification metric assigns no penalty to
an unsuppressed tuple if it belongs to the majority class
within its induced equivalence class. All other tuples are
penalized a value of 1. More precisely:

The minority function within the above statement
accepts a set of class-labeled tuples and returns the subset
of tuples belonging to any minority class with respect to
that set. As before, the first sum from this expression
penalizes non-suppressed tuples, and the second one sup-
pressed tuples. Iyengar has shown that this class-conscious
metric produces anonymized datasets that yield better clas-
sification models than do class-oblivious metrics [5].

Since suppressing a tuple is a rather drastic operation, it
may be desirable to impose a hard limit on the number of
suppressions allowed [10]. This can be modeled within
both metric expressions by adding a condition that imposes
an infinite cost should the number of suppressed tuples (the

sum of all equivalent class sizes that are less than)
exceed this limit.

4. A Set Representation for Anonymizations
In this section, we set up the problem by precisely defin-

ing the space of anonymizations for a given dataset as the
powerset of a special alphabet. Searching for an optimal
solution then reduces to identifying the subset of the alpha-
bet that represents the anonymization with the lowest cost.

As we have noted in Section 3, a generalization of an
attribute value domain can be represented as the set of val-
ues containing only the least value from each interval.
Recall that an anonymization is a set of generalizations,
one for each attribute column of the dataset. We can
impose a total order over the set of all attribute domains
such that the values in the th attribute domain () all
precede the values in any subsequent attribute domain (
for). Values inside a value domain must already be
ordered, and this order is preserved by the total order. The
idea is best illustrated through example. Figure 1 shows the
resulting total value ordering of a 3-attribute table contain-
ing a pre-partitioned Age attribute, a categorical Gender
attribute, and Marital Status attribute. Given such an order-
ing, we can unambiguously represent an anonymization as
the union of the individual generalizer sets for each
attribute. Since the least value from each value domain
must appear in the generalizer for that domain, these values
can be omitted without causing ambiguity. In the example
from Figure 1, these values are 1 (age=10-29), 4 (gen-
der=M) and 6 (Marital Status=Married).

Let us denote the least value in attribute domain as
. We now have that the powerset of the following alpha-

bet precisely defines the entire set of anonymizations
of the given dataset:

Conveniently, the empty set always represents the
most general anonymization in which the induced equiva-
lence classes consist of only a single equivalence class of
identical tuples. The set represents the most specific
anonymization -- it transforms the dataset into one identi-
cal to the original dataset. Given an anonymization, adding
a new value further specializes the data, and removing
some value generalizes it.

Example: Consider the anonymization defined
by the value ordering in Figure 1. After adding in the

k

j
j
D

CDM g k,() E 2

Es.t. E∀ k≥
∑ D E

Es.t. E∀ k<
∑+=

E
D g

CCM g k,() minority E()()
Es.t. E∀ k≥
∑ E

Es.t. E∀ k<
∑+=

k

i Σi
Σj

j i>

AGE GENDER MARITAL STATUS
<[10-29][30-39][40-49]> <[M][F]> <[Married][Widowed][Divorced][Never Married]>
.......1*.........2..........3............4*.5............6*..............7...............8..................9..........

Figure 1. Example total ordering of the value domains for a simple 3-attribute/9-value table. Given a total ordering, values can
be identified by their position along the ordering. The least value from each attribute domain (flagged with a *) must appear in

any valid generalization and hence can be treated as implicit.

i
vli

Σall

Σall = Σ1\vl1
() Σ2\vl2

() … Σm\vlm
()∪ ∪ ∪

 { }

Σall

2 7 9, ,{ }

implicit least values, we have that this anonymizer
represents the following generalizations: , ,
and . These in turn represent the following
value intervals used for transforming the dataset:

, ,

5. A Systematic Search Strategy
We have framed the problem of identifying an optimal

-anonymization as one involving searching through the
powerset of for the anonymization with lowest cost.
Searching the set of all subsets of a given alphabet is a
problem to which various generic search methods may be
applied. Our decision to frame the problem as a powerset
search problem was motivated by the success of these
methods in solving other NP-hard problems such as (maxi-
mal) itemset mining and rule induction [3,9,15].

One such generic search method is the OPUS frame-
work [15]. OPUS extends a systematic set-enumeration-
search strategy [9] with dynamic tree rearrangement and
cost-based pruning for solving optimization problems. The
set-enumeration search strategy is a straightforward
method of systematically enumerating all subsets of a
given alphabet through tree expansion. For example, the
set-enumeration tree for the alphabet is dis-
played in Figure 2.

Any node in a set enumeration tree can be represented
by the set enumerated by the node, which we call the head
set. In the context of -anonymization, the head set repre-
sents an anonymization whose cost is to be tested. We call
the set of values that can be appended to the head set to
form a child the tail set. The tail set is actually an ordered
set; the ordering specifies in what order children are to be
expanded. For the example tree in the figure, the tail order-
ing is lexicographic. Note that the first child of a node
inherits all but the first (unpruned) tail values from its par-
ent. Subsequent children inherit one fewer tail value until
the last (right-most) child, which inherits no tail values,
and hence has no children of its own. We call the set
formed by taking the union of the head and tail sets the
allset of that node. The allset represents the “most specific”
state that can be enumerated by a node’s descendants. Fig-
ure 3 annotates each node from the tree in Figure 2 with the
ordered tail sets. It also illustrates the effect of pruning a
tail value, which we will elaborate on in the following sub-
section.

Naively, we can search for the optimal anonymization
by fully traversing the set-enumeration tree over using
some standard traversal strategy such as depth-first search.
At each node in the tree, the cost of the anonymization rep-
resented by the head set is computed and compared against
the best cost anonymization identified so far. If the cost is
lower than the best cost found so far, the anonymization
and its cost are retained. Since set enumeration is system-
atic and complete, once the algorithm terminates, we are
guaranteed to have identified an optimal anonymization.

Unfortunately, the powerset of an alphabet is of size
. This large a state space implies that for such an algo-

rithm to be practical, heuristics and admissible pruning
strategies must be applied to keep the expected runtime
from approaching the worst case. The following sections
describe the specific pruning and heuristic reordering strat-
egies we have devised.
5.1 Pruning Overview

At each node in the search tree, our algorithm first tries
to prune the node itself. Failing that, the algorithm attempts
to prune values from the tail set of the node. Pruning tail
values when the node itself cannot be pruned may mark-
edly reduce the search space since it reduces the branching
factor of the node and all its children that would have oth-
erwise inherited the pruned value. For example, consider
the result of pruning the value from the tail of node
from the example tree (Figure 3). In this example, remov-
ing value 3 prunes four nodes. More subtly, pruning a tail
value can improve cost lower-bounding, leading to addi-
tional pruning beneath the node.

To guarantee optimality, a node can be pruned only
when the algorithm can precisely determine that none of its
descendants could be optimal. This determination can be
made by computing a lower-bound on the cost achievable
by any node within the subtree rooted beneath it. If the
lower-bound exceeds the current best cost, the node is

1 2,{ } 4{ }
6 7 9, ,{ }

Age: <[10-29], [30-49]> Gender: <[M or F]>
Marital status: <[Married], [Widowed or Divorced],
[Never Married]>

k
Σall

1 2 3 4, , ,{ }

k

Σall

Figure 2. Set enumeration tree over alphabet {1,2,3,4}.

Figure 3. Set enumeration tree with explicit tail set representation,
depicting the effect of pruning value 3 from the tail of node

{}

{1} {2}

{1,2}

{1,2,3}

{1,2,3,4}

{1,3}

{1,3,4}

{1,4} {2,3}

{2,3,4}

{2,4}

{3}

{1,2,4}

{4}

{3,4}

{}<1,2,3,4>

{1}<2,3,4> {2}<3,4>

{1,2}<4> {1,4}<>

{2,3}<4>

{2,3,4}

{2,4}<>

{3}<4>

{3,4}<>

{1,2,4}<>

{4}<>

1{ }

Σ
2 Σ

3 1{ }

pruned. For pruning tail values, we apply the same bound-
ing function but to an “imaginary” node as follows: given a
node with tail set , if the imaginary node consisting of
head set and tail set for some is prun-
able according to our bounding function, then can be
removed from the tail set of node without affecting
search completeness [3]. Pruning tail values reduces the
size of a node’s allset. Because allset size often impacts the
quality of the cost lower-bound, it can be advantageous to
recompute lower-bounds should the allset change. Our
implementation recursively attempts to prune tail values
whenever the allset is reduced.
5.2 Computing Cost Lower-Bounds

Cost lower-bounds must be computed in a way that is
specific to the particular cost metric being used. However,
the methods we use to obtain bounding functions are gen-
eral, and can be easily applied to most metrics in the litera-
ture.

An excellent starting point to lower-bounding costs
involves exploiting the fact that tuple suppression costs
increase monotonically as we descend into the tree. By vir-
tue of the tree expansion policy which appends values to
the head set when expanding a child of in the search
tree, the set represents the most general anonymization
that will be considered by the current node and any of
its descendants. This implies that if the anonymization
suppresses a set of tuples , then the set of tuples sup-
pressed by any descendant is guaranteed to contain .
Stated more formally:

OBSERVATION 5.1: At a node in the search tree, the set
of tuples suppressed by the anonymization is a subset
of the set of tuples suppressed by any descendant of .

Given this fact, we can compute a lower-bound on the
cost achievable by any node in the subtree rooted at by
totaling the suppression cost that will be imparted by the
tuples suppressed by . For the discernibility metric,
this is given by the value . For the classification
metric, the total penalty is . For the variants involving
hard limits on the number of suppressed tuples, when
exceeds the limit, the penalty is instead .

Lower-bounding by totaling the cost of suppressed
tuples is a good start, but it’s possible to improve the lower-
bound by also adding in a lower-bound on the penalty
resulting from tuples that aren’t suppressed by . One way
to do this is to consider the effect of the allset anonymiza-
tion. Recall that the allset is the union of the head and tail
sets of a given node, and therefore represents an anony-
mization that is strictly more specific than any other anony-
mization to be considered within the current subtree. Given
this, we note the following fact:

OBSERVATION 5.2: For a node with allset , the equiva-
lence classes induced by are subsets of the equiva-
lence classes induced by any descendant of .

This observation lets us lower-bound the size of an
equivalence class which a tuple will fall into. Let us now
consider the impacts of this observation on each cost met-

ric individually. For the discernibility metric, the observa-
tion implies that a tuple that is not suppressed by must
be penalized at least the value where is the equiva-
lence class induced by and contains . This lower-bound
is as good as we can do if . If falls into an induced
equivalence class of that is smaller than , then the pen-
alty imparted on it by some descendant of will be either

 (for nodes where is suppressed) or some value that is
at least (since unsuppressed tuples are always penalized
a value of or higher). We have now determined a lower-
bound on the cost imparted by every tuple under the dis-
cernibility metric. For a tuple , let us denote the equiva-
lence class induced by the allset that contains as .
We can state the discernibility metric lower-bound for-
mally as follows:

{
For the classification metric, instead of penalizing on a

tuple by tuple basis, we will bound the cost by penalizing
each of the allset induced equivalence classes. Recall that
for a set of class labeled tuples, the function
returns the tuples belonging only to the minority classes
with respect to that set. The majority() function can be
defined analogously as returning only those tuples belong-
ing to the majority class. Given this notation, we prove the
following claim:

CLAIM 5.3: For any two sets of class labeled tuples and
, the following statement holds:

.

Proof: Note that

To illustrate the proof technique, let us first consider the
case where there are only 2 classes. In such a case, the
contribution of to the minority class of is
either or , and the contribu-
tion of to the minority class of is either

 or . The claim follows then
from the fact that when there are only two classes,

 for any set of tuples .

For the case where there are more than 2 classes, we
have that the contribution of to the minority class of

 is either or it is
 for some set

. More precisely, we know that is the set of
tuples in that have the same class label as the major-
ity class in . Clearly, is a subset of

 and therefore disjoint from .
Furthermore, we know that . We
thus have that:

H T
H v{ }∪ T\v v T∈

v
T H

H H
H

H
H

S
S

H
H

H

H

S H
D S⋅
S

S
∞

H

H A
A

H

t H
E E

A t
E k≥ t

A k
H

D t
k

k

t
A t EA t,

LBDM H A,()
t∀ D∈
∑=

 when is suppressed
by ,

 otherwise

D t
H

max EA t, k,()

minority ()

E1
E2
minority E1 E2∪() minority E1() minority E2()+≥

E1 E2∪ minority E1() minority E2()∪=
majority E1() majority E2()∪ ∪

E1 E1 E2∪
minority E1() majority E1()

E2 E1 E2∪
minority E2() majority E2()

majority E() minority E()≥ E

E1
E1 E2∪ minority E1()
majority E1() minority E1() E1 c,–{ }∪
E1 c, E1 c,

E1
E1 E2∪ E1 c,

minority E1() majority E1()
E1 c, majority E1()≤

We repeat the exact argument with in place of to
show that its contribution to the minority class of

 is at least , and the claim fol-
lows.

This fact leads to the following classification metric
lower-bound for a node with allset :

{
In the equation above, when an induced equivalence

class is suppressed by , we mean that the tuples in
are suppressed by anonymization . By Observation 5.2,
either all tuples in an equivalence class induced by the
allset are suppressed by , or none of them are.
5.3 Useless Value Pruning

Another pruning technique we use is to prune tail values
representing specializations that can be easily determined
to have no hope of improving anonymization cost. Before
formally defining this concept, we illustrate the effect of
specialization on the induced equivalence classes of an
anonymization. Recall that descending to a child of any
node involves adding exactly one tail value to the anony-
mization. This new value will “split” some interval of the
anonymization into two new intervals. The impact on the
node’s induced equivalence classes is that some of them
will split into two new classes, with the rest remaining
unaffected, as illustrated in Figure 4.

Example: Consider again the example dataset
consisting of age, gender, and marital status. Suppose
we go from the root node () to the child node .
The root node induces a single equivalence class
consisting of all tuples (since all columns are fully
generalized). The child corresponds to specializing
on the gender attribute since the value “F” for Female is
the fifth value along the total order. The single
equivalence class of the parent node is thus split into two
equivalence classes, one consisting of all males, and one

consisting of all females.

Note that specializing doesn’t typically split all existing
equivalence classes. For instance, we may split an existing
age interval consisting of ages from into the
ranges . In this case, all equivalence
classes consisting of tuples with ages in the range of 50 and
up will not be affected by the specialization.

More formally now, given a node and some value
 from , specializing with value results in splitting

some (typically proper) subset of -induced equivalence
classes into new equivalence classes. If these new equiva-
lence classes are all less than size , then the effect of the
specialization is only to suppress tuples without changing
the status of those that remain unsuppressed. Furthermore
this effect of specializing on holds for any descendant of

 in the tree. We call any such tail value of a node
 whose only effect is to split induced equivalence

classes into only suppressed equivalence classes a useless
value with respect to (see Figure 4 and its caption for
an illustration.)

CLAIM 5.4: Consider the set of descendants of a given node
 whose anonymizations have the best cost among

all other descendants of . If the cost metric always
penalizes suppression of a tuple at least as high as any
generalization, then there exists a member of this set
whose anonymization contains no useless values with
respect to .

Proof: We prove the claim by showing that if there exists a
best-cost descendant containing useless values, then
removing the useless values must produce an anony-
mization of equivalent cost. Since this new anonymiza-
tion is itself a descendant of , the claim follows.

If a best cost descendant anonymization contains a
useless value , consider the anonymization
formed by removing from . By definition of use-
less value, this anonymization induces a set of equiva-
lence classes identical to those of except that some
equivalence classes suppressed by are merged.
Recall that we assume only that the metric assigns a
penalty to any suppressed tuple that is at least as high as
the penalty assigned to any generalization of the tuple.
Of those tuples affected by removing from the anony-
mization, some may remain suppressed (in which case
the penalty remains unchanged) and others may become
unsuppressed (in which case the penalty is unchanged or
may decrease). The anonymization must therefore

majority E1() minority E1() E1 c,–∪ ≥
majority E1() minority E1() E1–+ ≥
majority E1() minority E1() majority E1()–+ =

minority E1()

E2 E1

E1 E2∪ minority E2()

H A

LBCM H A,()
E induced by A∀

∑=
 when is sup-

pressed by ,
 otherwise

E E
H

minority E()

E H E
H

E
H

Figure 4. A sorted dataset with its tuple equivalence classes demarcated. Dashed lines il-
lustrate the splitting effect on equivalence classes resulting from adding a single value to the
represented anonymization. If the new equivalence classes created by these splits are all of

size less than ,then the value is called a useless value.k

 { } 5{ }

5{ }

1 50–[]
1 25–[] 26 50–[]

H T,
v T H v

H

k

v
H T, v
H T,

H T,

H T,
H T,

H T,

H T,
H'

v H'\v
v H'

H'
H'

v

H'\v

have a cost that is at least as good as that of . Since
 is known to be of best cost among all of the descen-

dants of , the cost of must in fact be equiva-
lent to that of . This process of removing useless
values can be repeated to create a best-cost anonymiza-
tion without any useless values, thereby proving the
claim.

A simple corollary of this claim is that any useless value
can be immediately pruned from the tail set without com-
promising the algorithm’s ability to discover an optimal
solution.

We note that the definition of useless value can in many
cases be broadened if we are willing to assume additional
properties of the cost metric. Consider a value such that
for any equivalence class split by specializing on , at least
one of the resulting splits is of size less than . Note that
such values subsume the set of previously defined useless
values. It can be shown that for both CM and DM metrics,
any member of this more liberally defined set of values
cannot possibly improve the cost of any descendant anony-
mization and can be pruned.
5.5 Tail Value Rearrangement

Recall that the tail set ordering affects the specific tree
that will be enumerated. Before expanding the children of a
given node , our algorithm reorders its tail values in a
manner that vastly increases pruning opportunities. While
reordering strategies can be tailored to the specific cost
metric used, we found one generic strategy to work well for
both of our sample metrics. Given a node , for each tail
value , the strategy counts the number of equivalence
classes induced by that are split by specializing on .
Tail values are sorted in decreasing order of this metric.
Any ties are then broken by the smaller value of
over all equivalence classes induced by the anonymiza-
tion .

This reordering strategy works well because specializa-
tions which have few positive effects stay in the tail sets the
longest. If a node’s tail consists of many such unproductive
values, the lower-bounding techniques can often eliminate
the node from consideration.

The impact of value rearrangement should not be under-
estimated. Without a good rearrangement strategy, good
anonymizations will be scattered uniformly throughout the
search tree, and it becomes impossible to prune significant
portions of the search space.
5.6 Putting it All Together.

Pseudo-code for the K-OPTIMIZE algorithm is provided
in Figure 5. While the procedure computes only the cost of
an optimal anonymization, it can be trivially extended to
also return the optimal anonymization itself. For clarity, we
do not pass the dataset as an argument, and treat it as
implicit.

The algorithm is initially invoked as K-OPTIMIZE(, ,
,) if no upper-bound on the best cost is known. In

some cases, an upper-bound might be known from the cost
of an anonymization determined by another algorithm, or
from a previous run of K-OPTIMIZE with a higher value of

. In such a case, this cost can be provided in place of
for better performance.

The main loop of K-OPTIMIZE implements a depth-first
traversal of the set-enumeration tree. Note that it attempts
to re-prune the tail after each recursive call; when returning
from a recursive call, the algorithm has determined the best
cost of any subnode that contains the value used to
extend for that call. It can thus remove from the tail to
reduce the size of the allset. Because the lower-bound com-
putations are dependent on allset equivalence classes, a
reduced allset may allow additional pruning opportunities.
This logic is also why The PRUNE function recursively
calls itself if it is able to successfully prune any tail value.
We omit pseudo-code for PRUNE-USELESS-VALUES, REOR-
DER-TAIL, COMPUTE-COST, and COMPUTE-LOWER-BOUND

H'
H'

H T, H'\v
H'

v
v

k

H

H
v

H v

E 2∑
E

H v∪

Figure 5. The K-OPTIMIZE procedure for computing the cost of an optimal k-anonymization.

K-OPTIMIZE(, head set , tail set , best cost)
;; This function returns the lowest cost of any
;; anonymization within the sub-tree rooted at
;; that has a cost less than (if one exists).
;; Otherwise, it returns .

PRUNE-USELESS-VALUES(,)
 MIN(, COMPUTE-COST())
PRUNE(, ,)
REORDER-TAIL()

while is non-empty do
the first value in the ordered set

 ;; preserve ordering
 K-OPTIMIZE(, , ,)
PRUNE(, ,)

return

k H T c

H c
c

T ← H T
c m← c H
T ← H T c
T ← H T,

T
v ← T
Hnew H v{ }∪←
T T v{ }–←
c ← k Hnew T c
T ← H T c

c

PRUNE(, head set , tail set , best cost)
;; This function creates and returns a new
;; tail set by removing values from that
;; cannot lead to anonymizations with cost
;; lower than
if COMPUTE-LOWER-BOUND(, ,)

then return

for each in do

if PRUNE(, ,)
then

if then return PRUNE(, ,)
else return

k H T c

T

c
k H H T∪ c≥

∅
Tnew T←

v T
Hnew H v{ }∪←

Hnew Tnew v{ }– c ∅=
Tnew Tnew v{ }–←

Tnew T≠ H Tnew c
Tnew

k ∅
Σall ∞

k ∞

v
H v

since their high-level descriptions follow directly from the
previous discussion. The next section details data struc-
tures we have developed to support efficient execution of
these operations.

6. Data Structures
6.1 Categories of Induced Equivalence Classes

A challenging aspect of implementing K-OPTIMIZE is in
efficient cost and bound computation. As we have defined
the algorithm, we require the three following categories of
induced equivalence classes for computing costs and their
bounds at a given node :

(Category 1) the equivalence classes induced by the
head anonymization ,
(Category 2) the equivalence classes induced by the
anonymization for each tail value , and
(Category 3) the equivalence classes induced by the
allset anonymization.
Head equivalence classes are required for lower-bound-

ing and for determining the cost of the current node. The
next category of equivalence classes is required for tail
value pruning and reordering. The allset equivalence
classes are required for cost lower-bounding. Even though
we have focused on two specific metrics, we note that this
information would be required for computing and bound-
ing most others.
6.2 Incremental Maintenance of Head Classes

A simple though slow approach to identifying equiva-
lence classes induced by an anonymization is to first sort
the dataset according to an equality function that compares
the tuples in their transformed state. Then, equivalence
classes can be demarcated by simply scanning the dataset
to detect class boundaries. Rather than resorting to multiple
dataset sorts per node as such a simple approach would
imply, our implementation incrementally maintains the
equivalence classes induced by the head set anonymiza-
tion.

A child node is expanded by adding a tail value to the
head set. Recall from Section 5.3 that the effect of such
additional specialization is to split a subset of the existing
induced equivalence classes into two, as depicted in Figure
4. Instead of sorting the dataset to identify the newly
induced equivalence classes after expanding a child, our
implementation identifies the relevant equivalence classes
from the parent node and splits them according to the inter-
val imposed by the new tail value.

In addition to supporting child expansion, the incremen-
tal structure needs to be able to recover the state of equiva-
lence classes when backtracking from a child to its parent.
To facilitate rapid recovery of the parent node’s state, each
time the algorithm splits an equivalence class, a pair of
pointers to the newly split equivalence classes is placed on
a stack. When time comes to backtrack, these pairs are
popped off the stack, and the equivalence classes desig-
nated by each pair are merged back into a single class. This
stack-based recovery is more efficient than the alternative

of explicitly scanning equivalence classes in order to iden-
tify which ones must be merged to recover the parent state.

So maintained, this structure provides the set of cate-
gory 1 equivalence classes induced by the current node at
any point during the search.
6.3 Obtaining Tail and Allset-Induced Classes

Category 2 equivalence classes must be computed for
each tail value . In our implementation, this involves spe-
cializing the classes induced by the head anonymization for
each tail value. We could perform the specialization by
explicitly splitting the head equivalence classes in the usual
way, followed by a recovery phase that immediately
merges them before going on to the next tail value. Instead,
the algorithm determines the resulting sizes of each split
for each tail value without explicitly performing it.

Obtaining the category 3 allset equivalence classes is
the most problematic since the allset typically contains
many values. If the number of tail values is small, our
implementation will apply the previous incremental spe-
cialization procedure repeatedly (one for each tail value) to
determine the equivalence classes induced by the allset,
followed by an immediate stack-based recovery. If there
are many values in the tail set (> 20), then we have found it
is more efficient to determine the allset equivalence classes
by individually sorting and demarcating the already materi-
alized equivalence classes induced by the head set. Since
each equivalence class is generally much smaller than the
entire dataset, each equivalence class sort exhibits signifi-
cantly better locality than a complete dataset sort, yielding
better performance. Correctness of this sorting optimiza-
tion follows from Observation 5.2.

7. Evaluation
7.1 Experimental Setup

One goal of our experiments is to understand the perfor-
mance of K-OPTIMIZE. Beyond this, the ability to quickly
identify optimal solutions allows exploring many other
interesting aspects of -anonymization. For instance, we
have noted that several variations on the problem have
been proposed, including whether to allow (a bounded
number of) suppressions, or whether to allow the algorithm
to partition ordinal domains without hierarchy restrictions.
Which variations are worthwhile in the sense that they pro-
duce “better” solutions? What is the impact of such exten-
sions on performance? Another goal of the experiments is
to begin addressing such concerns.

The dataset used in our experiments was the adult cen-
sus dataset from the Irvine machine learning repository,
since this dataset is the closest to a common k-anonymiza-
tion “benchmark” that we are aware of. This dataset was
prepared as described by Iyengar [5] to the best of our abil-
ity. It consists of 9 attributes (8 regular and one class col-
umn) and 30,162 records, and contains actual census data
that has not already been anonymized. The so-coded
dataset (“adult_fine”) supports partitioning of the age col-
umn at a very fine grain (one value for each unique age

H

H

H v∪ v

v

k

rounded to the nearest year). This resulted in a searchable
alphabet () of over 160 values.

To understand the performance and cost impacts of
using a coarser initial partitioning, we also experimented
with another coding of the dataset (“adult_coarse”) in
which the age column was “pre-generalized” into 15
unique values, each consisting of a 5 year age range.1 This
reduced the alphabet to a more manageable but still chal-
lenging 100 unique values. (Recall that this results in a
state space of size .) Coarser partitionings reduce the
flexibility given to the algorithm in determining an anony-
mization.

The algorithm was implemented in C++. All run-times
are from a dedicated 2 processor, 2.8 GHZ Intel Xeon class
machine running Linux OS (kernel version 2.4.20) and gcc

v3.2.1. Only one processor was used by the algorithm dur-
ing each run. We used the qsort C library function provided
by gcc for all sorting operations.
7.2 Results

We explored the impacts of the following dimensions on
performance and solution quality:
• The setting of . Specifically, we used values of 1000,

500, 250, 100, 50, 25, 10, and 5.
• The number of suppressions allowed. Specifically, we

ran the algorithm with no suppressions allowed, a limit
of 100 suppressions, and with no restriction (denoted inf)
on the number of suppressions.

• The impact of seeding the algorithm with a non-infinite
cost.

• The impact of a coarse versus fine partitioning of the age
column.

• The cost metric used (CM or DM.)
The first graphs (Figure 6a) show the runtime when

there is no cost seeding. Note that the algorithm performs

1 Though we used this simple equidistant pre-partitioning strategy for all
experiments, a domain discretization approach that considers the class
column [4] might be a better approach when using class-conscious met-
rics such as the classification metric.

Σall

2100

k

Performance (DM, no seeding)

1000

500
250

100
50 25 10 5

1

10

100

1000

10000

100000

1101001000

k

ru
n

ti
m

e
 (

s
e
c
)

coarse,sup_limit=0 fine,sup_limit=0 coarse,sup_limit=100
fine,sup_limit=100 coarse,sup_limit=inf fine,sup_limit=inf

Performance (CM, no seeding)

1000
500

250
100

50
25

10
5

1

10

100

1000

10000

100000

1101001000

k

ru
n

ti
m

e
 (

s
e
c
)

coarse,sup_limit=0 fine,sup_limit=0 coarse,sup_limit=100
fine,sup_limit=100 coarse,sup_limit=inf fine,sup_limit=inf

Figure 6a. Performance of the K-OPTIMIZE procedure.

Optimal Solution Cost (DM metric)

1000

500

250

100

50

25

10
5

1000000

10000000

100000000

1101001000

k

D
M

 c
o

s
t

coarse,sup_limit=0 fine,sup_limit=0 coarse,sup_limit=100 fine,sup_limit=100

Optimal Solution Cost (CM metric)

100

50

25

10

5

5150

5200

5250

5300

5350

5400

5450

5500

110100

k

C
M

 c
o

s
t

coarse,sup_limit=0 fine,sup_limit=0 coarse,sup_limit=100 fine,sup_limit=100

Figure 6b. Optimal solution cost.

extremely well across all values of when no suppressions
are allowed. As we allow more suppressions, algorithm
performance degrades rapidly with smaller . As expected,
the vastly increased search space resulting from fine parti-
tioning of the age column requires significantly more time,
though the algorithm still successfully identifies the opti-
mal anonymization for all but a very few cases. We noticed
that the higher the limit on suppressions, the more slowly
the algorithm converged on a good solution. This sug-
gested to us that seeding the algorithm with a good initial
score might substantially improve its overall performance
when the suppression limit was high. We verified this was
indeed the case (Figure 7b) by seeding the algorithm with
the optimal cost identified by the no suppression runs. The
runtimes plotted in this figure add the cost required to find
the no suppression optimal solution with the cost required
to find the optimal solution after seeding. More perfor-
mance improvements might be possible if we were to seed
with the best solution score identified by the suppression-
free run after some fixed amount of time, since the suppres-
sion-free algorithm typically identified good (though not
necessarily optimal) solutions very quickly.

Regarding cost of the optimal solutions (Figure 6b), we
found that the finely partitioned age column allowed for
significant improvements in cost for both metrics. Interest-
ingly, for all cases, allowing an infinite number of suppres-
sions did not improve the cost of the optimal solution at all,
which is why the sup_limit=inf plots are omitted in these
graphs. The coarsely partitioned dataset benefited more
from allowing suppressions, but significant benefits from
suppressions appear only at smaller settings of . For the
CM metric, we plot only the results for , since opti-
mal solution cost for higher settings of was identical
across all other parameter combinations.

7.3 Comparison with Other Algorithms
While none of the other optimal algorithms in the litera-

ture can feasibly handle the census dataset used in our
experiments, incomplete methods are known to perform
well in practice on this data despite their lack of any quality
guarantees. We therefore compared the effectiveness of K-
OPTIMIZE to various incomplete methods. These methods
included simulated annealing, genetic algorithms, and
greedy (hill-climbing) algorithms. We found that purely
greedy approaches, though they executed quite quickly,
typically produced highly sub-optimal anonymizations.
Genetic algorithms and simulated annealing produced ano-
nymizations of higher quality, but converged too slowly.
The approach we found to work best was a new iterated 2-
phase hill-climbing method we concocted to combine the
virtues of both greedy and stochastic methods. This algo-
rithm begins by generating a random anonymization. It
then enters a generalization phase in which values are itera-
tively removed (always selecting the one that most
improves the cost) until the cost can no longer be
improved. Next, it switches to a specialization phase in
which values are iteratively added (again always selecting
the one providing the biggest cost improvement) until no
improvement is possible. The algorithm repeatedly exe-
cutes these two phases until neither phase is capable of
improving the score (implying a local minimum is
reached.) At this point, the anonymization cost is recorded,
and the algorithm repeats the entire process. This algorithm
has no explicit stopping criteria and instead continuously
attempts to improve on the best solution found until
stopped by the user.

Note that the specialization phase of this algorithm can
be optimized according to the strategies provided in Sec-
tion 6, and similar approaches applied for optimizing the

k

k

Performance (DM, seeded vs unseeded)

10

100

1000

10000

100000

1101001000

k

ru
n

ti
m

e
 (

s
e
c
)

coarse,sup_limit=inf,unseeded fine,sup_limit=inf,unseeded
coarse,sup_limit=inf,seeded fine,sup_limit=inf,seeded

Best Cost Solution (DM, k=25, adult_fine)

1000000

10000000

100000000

1000000000

1 10 100 1000 10000 100000

time

c
o

s
t

complete stochastic

Figure 7a. Seeded vs. Unseeded Performance of K-OPTIMIZE. Figure 7b. Stochastic and K-OPTIMIZE solution cost over time.

k
k 100≤

k

generalization phase. However, the implementation evalu-
ated here uses only dataset sorting for cost computations.

When left to run long enough, this new stochastic
approach is typically capable of finding an optimal anony-
mization even though it is of course incapable of guaran-
teeing its optimality. The graph in Figure 7b depicts the
cost of the best solution found by both this stochastic
approach and K-OPTIMIZE (labeled “complete”) at a given
point during their execution. We ran K-OPTIMIZE with a
zero suppression limit followed by a seeded run with no
suppression limit. Likewise, the stochastic approach was
allowed to consider solutions with no limit on the number
of suppressions. Note that while K-OPTIMIZE was not
designed for rapidly finding a good solution, it performs
similarly to the stochastic method for this purpose, and
finds the optimal solution three times more quickly (5359
vs. 14104 seconds.) The figure depicts the case where

 on the finely partitioned dataset; results for other
parameter settings were qualitatively similar. We believe
an improved implementation of this new stochastic
approach that reduces reliance on sorting operations will
prove attractive in practice when provable optimality is
either out of reach or not a requirement.

8. Conclusions and Future Work
We have proposed an algorithm that identifies provably

optimal anonymizations of real census data under a flexible
and highly combinatorial model of attribute value generali-
zation. We framed the problem as one that involves search-
ing the power-set of a special alphabet of domain values,
and attacked it through a tree-search strategy that explores
anonymizations beginning from the most general to more
specific. The algorithm incorporates node pruning through
cost lower-bounding and dynamic tree rearrangement
through tail value reordering. In addition, we implemented
data-management strategies that avoid repeatedly sorting
the entire dataset for markedly reduced node evaluation
times. We used the algorithm to quantify the effects of var-
ious parameter settings and data preparation methods on
performance as well as anonymization quality. We also
used the approach to evaluate effectiveness of stochastic
methods for -anonymization, and proposed a new iterated
2-phase greedy algorithm that outperforms other incom-
plete methods.

A desirable feature of protecting privacy through -
anonymity is its preservation of data integrity. Despite its
intuitive appeal, it is possible that non-integrity preserving
approaches to privacy (such as random perturbation) may
produce a more informative result in many circumstances.
Indeed, it may be interesting to consider combined
approaches, such as -anonymizing over only a subset of
potentially identifying columns and randomly perturbing
the others. We believe that a better understanding of when
and how to apply various privacy-preserving methods
deserves further study. Optimal algorithms will be useful in
this regard since they eliminate the possibility that a poor
outcome is the result of a highly sub-optimal solution
rather than an inherent limitation of the specific technique.

Acknowledgements
We thank Vijay Iyengar for his valuable feedback and

his assistance with several data preparation issues.

References
[1] C. C. Aggarwal and P. S. Yu. A condensation approach

to privacy preserving data mining. Advances in Data-
base Technology - EDBT-2004, 9th Int’l Conf. on
Extending Database Technology, 183-199.

[2] R. Agrawal and R. Srikant. Privacy preserving data-
mining. In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data 439-450, 2000.

[3] R. J. Bayardo, R. Agrawal, and G. Gunopulos. Con-
straint-based rule mining in large, dense databases. In
Proc. of the 15th Int’l Conf. on Data Engineering, 188-
197, 1999.

[4] U. M. Fayyad and K. B. Irani. Multi-interval discretiza-
tion of continuous-valued attributes for classification
learning. In Proc. of 13th Int’l Joint Conf. on Artificial
Intelligence, 1022-1027, 1993.

[5] V. Iyengar. Transforming data to satisfy privacy con-
straints. In Proc. of the Eigth ACM SIGKDD Int’l Conf.
on Knowledge Discovery and Data Mining, 279-288,
2002.

[6] A. Hundpool and L. Willenborg. Mu-Argus and Tau
Argus: Software for Statistical Disclosure Control.
Third Int’l Seminar on Statistical Confidentiality, 1996.

[7] S. Kim and W. Winkler. Masking microdata files. In
ASA Proc. of the Section on Survey Research Methods,
114-119, 1995.

[8] A. Meyerson and R. Williams. On the complexity of
optimal k-anonymity. In Proc.of the 23rd ACM SIG-
MOD-SIGACT-SIGART Symposium on the Principles
of Database Systems, 223-228, 2004.

[9] R. Rymon. Search through systematic set enumeration.
In Proc. of the Third Int’l Conf. on Principles of
Knowledge Representation and Reasoning, 539-550,
1992.

[10] P. Samarati. Protecting respondents’ identities in
microdata release. IEEE Transactions on Knowledge
and Data Engineering 13(6): 1010-1027, 2001.

[11] P. Samarati and L. Sweeney. Generalizing data to pro-
vide anonymity when disclosing information. In Proc.
of the 17th ACM SIGMOD-SIGACT-SIGART Sympo-
sium on the Principles of Database Systems, 188, 1998.

[12] L. Sweeney. Achieving k-anonymity privacy protec-
tion using generalization and suppression. Int’l Journal
on Uncertainty, Fuzziness, and Knowledge-Base Sys-
tems 10(5): 571-588, 2002.

[13] L. Sweeney. Datafly: a system for providing anonym-
ity in medical data. In Database Security XI: Status and
Prospects, IFIP TC11 WG11.3 11th Int’l Conf. on
Database Security, 356-381, 1998.

[14] L. Sweeney. K-anonymity: a model for protecting pri-
vacy. Int’l Journal on Uncertainty, Fuzziness, and
Knowledge-Based Systems 10(5):557-570, 2002.

[15] G. I. Webb. Opus: an efficient admissible algorithm for
unordered search. Journal of Artificial Intelligence
Research 3, 431-465, 1995.

[16] W. E. Winkler. Using Simulated Annealing for k-ano-
nymity. Research Report Series (Statistics #2002-7), U.
S. Census Bureau, 2002.

k 50=

k

k

k

	Data Privacy Through Optimal k-Anonymization
	1. Introduction
	2. Related Work
	3. Preliminaries
	3.1 Modeling Tuple Suppression
	3.2 Problem Statement
	3.3 Modeling Desirable Anonymizations

	4. A Set Representation for Anonymizations
	5. A Systematic Search Strategy
	5.1 Pruning Overview
	5.2 Computing Cost Lower-Bounds
	5.3 Useless Value Pruning
	5.5 Tail Value Rearrangement
	5.6 Putting it All Together.

	6. Data Structures
	6.1 Categories of Induced Equivalence Classes
	6.2 Incremental Maintenance of Head Classes
	6.3 Obtaining Tail and Allset-Induced Classes

	7. Evaluation
	7.1 Experimental Setup
	7.2 Results
	7.3 Comparison with Other Algorithms

	8. Conclusions and Future Work
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

