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Abstract In this paper we present extended definitions of k-anonymity
and use them to prove that a given data mining model does not violate
the k-anonymity of the individuals represented in the learning examples.
Our extension provides a tool that measures the amount of anonymity re-
tained during data mining. We show that our model can be applied to
various data mining problems, such as classification, association rule min-
ing and clustering. We describe two data mining algorithms which exploit
our extension to guarantee they will generate only k-anonymous output,
and provide experimental results for one of them. Finally, we show that our
method contributes new and efficient ways to anonymize data and preserve
patterns during anonymization.

1 Introduction

In recent years the data mining community has faced a new challenge. Hav-
ing shown how effective its tools are in revealing the knowledge locked within
huge databases, it is now required to develop methods that restrain the
power of these tools to protect the privacy of individuals. This require-
ment arises from popular concern about the powers of large corporations
and government agencies – concern which has been reflected in the actions
of legislative bodies (e.g., the debate about and subsequent elimination of
the Total Information Awareness project in the US [10]). In an odd turn
of events, the same corporations and government organizations which are
the cause of concern are also among the main pursuers of such privacy-
preserving methodologies. This is because of their pressing need to coop-
erate with each other on many data analytic tasks (e.g., for cooperative
cyber-security systems, failure analysis in integrative products, detection of
multilateral fraud schemes, and the like).
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The first approach toward privacy protection in data mining was to per-
turb the input (the data) before it is mined [4]. Thus, it was claimed, the
original data would remain secret, while the added noise would average out
in the output. This approach has the benefit of simplicity. At the same
time, it takes advantage of the statistical nature of data mining and di-
rectly protects the privacy of the data. The drawback of the perturbation
approach is that it lacks a formal framework for proving how much privacy
is guaranteed. This lack has been exacerbated by some recent evidence that
for some data, and some kinds of noise, perturbation provides no privacy
at all [20,24]. Recent models for studying the privacy attainable through
perturbation [9,11,12,15,17] offer solutions to this problem in the context
of statistical databases.

At the same time, a second branch of privacy preserving data mining
was developed, using cryptographic techniques. This branch became hugely
popular [14,19,22,27,36,41] for two main reasons: First, cryptography offers
a well-defined model for privacy, which includes methodologies for proving
and quantifying it. Second, there exists a vast toolset of cryptographic al-
gorithms and constructs for implementing privacy-preserving data mining
algorithms. However, recent work (e.g. [23,14]) has pointed that cryptog-
raphy does not protect the output of a computation. Instead, it prevents
privacy leaks in the process of computation. Thus, it falls short of providing
a complete answer to the problem of privacy preserving data mining.

One definition of privacy which has come a long way in the public arena
and is accepted today by both legislators and corporations is that of k-
anonymity [33]. The guarantee given by k-anonymity is that no information
can be linked to groups of less than k individuals. The k-anonymity model
of privacy was studied intensively in the context of public data releases [3,
7,8,18,21,26,29,31,32], when the database owner wishes to ensure that no
one will be able to link information gleaned from the database to individuals
from whom the data has been collected. In the next section we provide, for
completeness, the basic concepts of this approach.

We focus on the problem of guaranteeing privacy of data mining out-
put. To be of any practical value, the definition of privacy must satisfy the
needs of users of a reasonable application. Two examples of such applica-
tions are (1) a credit giver, whose clientele consists of numerous shops and
small businesses, and who wants to provide them with a classifier that will
distinguish credit-worthy from credit-risky clients, and (2) a medical com-
pany that wishes to publish a study identifying clusters of patients who
respond differently to a course of treatment. These data owners wish to
release data mining output, but still be assured that they are not giving
away the identity of their clients. If it could be verified that the released
output withstands limitations similar to those set by k-anonymity, then the
credit giver could release a k-anonymous classifier and reliably claim that
the privacy of individuals is protected. Likewise, the authors of a medical
study quoting k-anonymous cluster centroids could be sure that they comply
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with HIPAA privacy standards [35], which forbid the release of individually
identifiable health information.

One way to guarantee k-anonymity of a data mining model is to build it
from a k-anonymized table. However, this poses two main problems: First,
the performance cost of the anonymization process may be very high, espe-
cially for large and sparse databases. In fact, the cost of anonymization can
exceed the cost of mining the data. Second, the process of anonymization
may inadvertently delete features that are critical for the success of data
mining and leave out those that are useless; thus, it would make more sense
to perform data mining first and anonymization later.

To demonstrate the second problem, consider the data in Table 1, which
describes loan risk information of a mortgage company. The Gender, Mar-
ried, Age and Sports Car attributes contain data that is available to the
public, while the Loan Risk attribute contains data that is known only to
the company. To get a 2-anonymous version of this table, many practical
methods call for the suppression or generalization of whole columns. This
approach was termed single-dimension recoding [25]. In the case of Table
1, the data owner would have to choose between suppressing the Gender
column and suppressing all the other columns.

Table 1 Mortgage company data

Name Gender Married Age Sports Loan
Car Risk

Anthony Male Yes Young Yes good

Brian Male Yes Young No good

Charles Male Yes Young Yes good

David Male Yes Old Yes good

Edward Male Yes Old Yes bad

Frank Male No Old Yes bad

Alice Female No Young No good

Barbara Female No Old Yes good

Carol Female No Young No bad

Donna Female Yes Young No bad

Emily Female Yes Young Yes bad

Fiona Female Yes Young Yes bad

The methods we describe in this paper would lead to full suppression
of the Sports Car column as well as a partial suppression of the Age and
Married columns. This would result in Table 2. This kind of generalization
was termed multi-dimensional recoding [25]. While more data is suppressed,
the accuracy of the decision tree learned from this table (Figure 1) is better
than that of the decision tree learned from the table without the Gender
column. Specifically, without the Gender column, it is impossible to obtain
a classification better than 50% good loan risk, 50% bad loan risk, for any
set of tuples.
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Table 2 Anonymized mortgage company data

Gender Married Age Sports Car Loan Risk

Male * Young * good

Male * Young * good

Male * Young * good

Male * Old * good

Male * Old * bad

Male * Old * bad

Female No * * good

Female No * * good

Female No * * bad

Female Yes * * bad

Female Yes * * bad

Female Yes * * bad

Fig. 1 Mortgage company decision tree

Gender

Age

FemaleMale

Young Old

3 good
0 bad

1 good
2 bad

Married

Yes No

0 good
3 bad

2 good
1 bad

Leaf 1 Leaf 2 Leaf 3 Leaf 4

In this paper we extend the definition of k-anonymity with definitions of
our own, which can then be used to prove that a given data mining model is
k-anonymous. The key for these extended definitions is in identifying how
external data can be used to perform a linking attack on a released model.
We exemplify how our definitions can be used to validate the k-anonymity
of classification, clustering, and association rule models, and demonstrate
how the definitions can be incorporated within a data mining algorithm to
guarantee k-anonymous output. This method ensures the k-anonymity of
the results while avoiding the problems detailed above.

This paper is organized as follows: In Section 2 we reiterate and discuss
Sweeney’s formal definition of k-anonymity. We then proceed in Section 3
to extend her definition with our definitions for k-anonymous data mining
models. In Section 4 we exemplify the use of these definitions, and we present
two k-anonymous data mining algorithms in Section 5. Section 6 shows
experimental results using one of the algorithms from Section 5. Section 7
discusses related work. We present our conclusions in Section 8.
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2 k-Anonymity of Tables

The k-anonymity model was first described by Sweeney and Samarati [31],
and later expanded by Sweeney [33] in the context of data table releases.
In this section we reiterate their definition and then proceed to analyze the
merits and shortcomings of k-anonymity as a privacy model.

The k-anonymity model distinguishes three entities: individuals, whose
privacy needs to be protected; the database owner, who controls a table
in which each row (also referred to as record or tuple) describes exactly
one individual; and the attacker. The k-anonymity model makes two major
assumptions:

1. The database owner is able to separate the columns of the table into a
set of quasi-identifiers, which are attributes that may appear in external
tables the database owner does not control, and a set of private columns,
the values of which need to be protected. We prefer to term these two
sets as public attributes and private attributes, respectively.

2. The attacker has full knowledge of the public attribute values of individ-
uals, and no knowledge of their private data. The attacker only performs
linking attacks. A linking attack is executed by taking external tables
containing the identities of individuals, and some or all of the public
attributes. When the public attributes of an individual match the pub-
lic attributes that appear in a row of a table released by the database
owner, then we say that the individual is linked to that row. Specifically
the individual is linked to the private attribute values that appear in
that row. A linking attack will succeed if the attacker is able to match
the identity of an individual against the value of a private attribute.

As accepted in other privacy models (e.g., cryptography), it is assumed
that the domain of the data (the attributes and the ranges of their val-
ues) and the algorithms used for anonymization are known to the attacker.
Ignoring this assumption amounts to “security by obscurity,” which would
considerably weaken the model. The assumption reflects the fact that knowl-
edge about the nature of the domain is usually public and in any case of
a different nature than specific knowledge about individuals. For instance,
knowing that every person has a height between zero and three meters is
different than knowing the height of a given individual.

Under the k-anonymity model, the database owner retains the k-anonymity
of individuals if none of them can be linked with fewer than k rows in a
released table. This is achieved by making certain that in any table released
by the owner there are at least k rows with the same combination of val-
ues in the public attributes. Since that would not necessarily hold for every
table, most of the work under the k-anonymity model [7,18,21,31–33] fo-
cuses on methods of suppressing, altering, and eliminating attribute values
in order that the changed table qualify as k-anonymous.

Table 3 illustrates how k-anonymization hinders linking attacks. The
joining of the original Table 3.A with the public census data in 3.C would
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Table 3 Table anonymization

Zipcode Income

11001 High

11001 Low

12033 Mid

12045 High

Zipcode Income

110XX High

110XX Low

120XX Mid

120XX High

Zipcode Name

11001 John

11001 Lisa

12033 Ben

12045 Laura

A. Original B. 2-Anonymized C. Public

reveal that Laura’s income is High and Ben’s is Middle. However, if the
original table is 2-anonymized to that in 3.B, then the outcome of joining
it with the census data is ambiguous.

It should be noted that the k-anonymity model is slightly broader than
what is described here [33], especially with regard to subsequent releases of
data. We chose to provide the minimal set of definitions required to extend
k-anonymity in the next section.

2.1 The k-Anonymity Model: Pros and Cons

The limitations of the k-anonymity model stem from the two assumptions
above. First, it may be very hard for the owner of a database to determine
which of the attributes are or are not available in external tables. This limi-
tation can be overcome by adopting a strict approach that assumes much of
the data is public. The second limitation is much harsher. The k-anonymity
model assumes a certain method of attack, while in real scenarios there is
no reason why the attacker should not try other methods, such as injecting
false rows (which refer to no real individuals) into the database. Of course,
it can be claimed that other accepted models pose similar limitations. For
instance, the well-accepted model of semi-honest attackers in cryptography
also restricts the actions of the attacker.

A third limitation of the k-anonymity model published recently in the
literature [28] is its implicit assumption that tuples with similar public at-
tribute values will have different private attribute values. Even if the at-
tacker knows the set of private attribute values that match a set of k indi-
viduals, the assumption remains that he does not know which value matches
any individual in particular. However, it may well happen that, since there
is no explicit restriction forbidding it, the value of a private attribute will
be the same for an identifiable group of k individuals. In that case, the
k-anonymity model would permit the attacker to discover the value of an
individual’s private attribute.

Despite these limitations, k-anonymity is one of the most accepted mod-
els for privacy in real-life applications, and provides the theoretical basis for
privacy related legislation [35]. This is for several important reasons: (1)
The k-anonymity model defines the privacy of the output of a process and
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not of the process itself. This is in sharp contrast to the vast majority of
privacy models that were suggested earlier, and it is in this sense of privacy
that clients are usually interested. (2) It is a simple, intuitive, and well-
understood model. Thus, it appeals to the non-expert who is the end client
of the model. (3) Although the process of computing a k-anonymous table
may be quite hard [3,29], it is easy to validate that an outcome is indeed
k-anonymous. Hence, non-expert data owners are easily assured that they
are using the model properly. (4) The assumptions regarding separation of
quasi-identifiers, mode of attack, and variability of private data have so far
withstood the test of real-life scenarios.

3 Extending k-Anonymity to Models

We are now ready to present the first contribution of this paper: an extension
of the definition of k-anonymity beyond the release of tables. Our definitions
are accompanied by a simple example to facilitate comprehension.

Consider a mortgage company that uses a table of past borrowers’ data
to build a decision tree classifier predicting whether a client would default on
the loan. Wishing to attract good clients and deter bad ones, the company
includes the classifier on its Web page and allows potential clients to evaluate
their chances of getting a mortgage. However, it would be unacceptable if
somebody could use the decision tree to find out which past clients failed to
return their loans. The company assumes that all the borrowers’ attributes
(age, marital status, ownership of a sports car, etc.) are available to an
attacker, except for the Loan Risk attribute (good/bad loan risk), which is
private.

Figure 1 describes a toy example of the company’s decision tree, as
induced from a set of learning examples, given in Table 1, pertaining to 12
past clients. We now describe a table which is equivalent to this decision
tree in the sense that the table is built from the tree and the tree can be
reconstructed from the table. The equivalent table (Table 2) has a column
for each attribute that is used in the decision tree and a row for each learning
example. Whenever the tree does not specify a value (e.g., Marital Status
for male clients), the value assigned to the row will be *.

The motivation for the definitions which follow is that if the equiva-
lent table is k-anonymous, the decision tree should be considered to be
“k-anonymous” as well. The rationale is that, because the decision tree in
Figure 1 can be reconstructed from Table 2, it contains no further informa-
tion. Thus, if a linking attack on the table fails, any similar attack on the
decision tree would have to fail as well. This idea that a data mining model
and a k-anonymous table are equivalent allows us to define k-anonymity in
the context of a broad range of models. We begin our discussion by defining
a private database and then defining a model of that database.

Definition 1 (A Private Database) A private database T is a collection
of tuples from a domain D = A × B = A1 × ... × Ak × B1 × ... × B`.
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A1, . . . , Ak are public attributes (a.k.a. quasi-identifiers) and B1, . . . , B` are
private attributes.

We denote A = A1 × . . . × Ak the public subdomain of D. For every
tuple x ∈ D, the projection of x into A, denoted xA, is the tuple in A that
has the same assignment to each public attribute as x. The projection of a
table T into A is denoted TA = {xA : x ∈ T}.

Definition 2 (A Model) A model M is a function from a domain D to
an arbitrary output domain O.

Every model induces an equivalence relation on D, i.e., ∀x, y ∈ D, x ≡
y ⇔ M(x) = M(y) . The model partitions D into respective equivalence
classes such that [x] = {y ∈ D : y ≡ x}.

In the mortgage company decision tree example, the decision tree is a
function that assigns bins to tuples in T . Accordingly, every bin within every
leaf constitutes an equivalence class. Two tuples which fit into the same bin
cannot be distinguished from one another using the tree, even if they do not
agree on all attribute values. For example, although the tuples of Anthony
and Brian do not share the same value for the Sports Car attribute, they
both belong to the good loan risk bin of leaf 1. This is because the tree
does not differentiate tuples according to the Sports Car attribute. On the
other hand, while the tuples of David and Edward will both be routed to
leaf 2, they belong to different bins because their loan risk classifications
are different.

The model alone imposes some structure on the domain. However, when
a data owner releases a model based on a database, it also provides informa-
tion about how the model relates to the database. For instance, a decision
tree model or a set of association rules may include the number of learning
examples associated with each leaf, or the support of each rule, respectively.
As we shall see, a linking attack can be carried out using the partitioning
of the domain, together with the released populations of different regions.

Definition 3 (A Release) Given a database T and a model M , a release
MT is the pair (M,pT ), where pT (for population) is a function that assigns
to each equivalence class induced by M the number of tuples from T that
belong to it, i.e., pT ([x]) = |T

⋂
[x]| .

Note that other definitions of a release, in which the kind of information
provided by pT is different, are possible as well. For example, a decision tree
may provide the relative frequency of a bin within a leaf, or just denote the
bin that constitutes the majority class. In this paper we assume the worst
case, in which the exact number of learning examples in each bin is provided.
The effect of different kinds of release functions on the extent of private data
that can be inferred by an attacker is an open question. Nevertheless, the
anonymity analysis provided herein can be applied in the same manner for
all of them. In other words, different definitions of pT would reveal different
private information on the same groups of tuples.
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As described, the released model partitions the domain according to the
values of public and private attributes. This is reasonable because the users
of the model are intended to be the database owner or the client, both of
whom supposedly know the private attributes’ values. We now turn to see
how the database and the release are perceived by an attacker.

Definition 4 (A Public Identifiable Database) A public identifiable
database TID = {(idx, xA) : x ∈ T} is a projection of a private database T
into the public subdomain A, such that every tuple of TA is associated with
the identity of the individual to whom the original tuple in T pertained.

Although the attacker knows only the values of public attributes, he
can nevertheless try to use the release MT to expose private information of
individuals represented in TID. Given a tuple (idx, xA) ∈ TID and a release,
the attacker can distinguish the equivalence classes to which the original
tuple x may belong. We call this set of equivalence classes the span of xA.

Definition 5 (A Span) Given a model M , the span of a tuple a ∈ A is the
set of equivalence classes induced by M , which contain tuples x ∈ D, whose
projection into A is a. Formally, SM (a) = {[x] : x ∈ D ∧ xA = a}. When
M is evident from the context, we will use the notation S(a).

In the aforementioned mortgage company’s decision tree model, every
leaf constitutes a span, because tuples can be routed to different bins within
a leaf by changing their private Loan Risk attribute, but cannot be routed
to other leaves unless the value of a public attribute is changed. For ex-
ample, an attacker can use the public attributes Gender and Married to
conclude that the tuples of Barbara and Carol both belong to leaf 4. How-
ever, although these tuples have different values for the public attributes
Age and Sports Car, the attacker cannot use this knowledge to determine
which tuple belongs to which bin. These tuples are indistinguishable from
the attacker’s point of view, with respect to the model: both share the same
span formed by leaf 4.

We will now consider the connection between the number of equivalence
classes in a span and the private information that can be inferred from the
span.

Claim 1 If S(a) contains more than one equivalence class, then for every
two equivalence classes in the span, [x] and [y], there is at least one combi-
nation of attribute values that appears in [x] and does not appear in [y].

Proof By definition, for every equivalence class [x] ∈ S(a), there exists
x ∈ [x] such that xA = a. Let [x] and [y] be two equivalence classes in S(a),
and let x ∈ [x], y ∈ [y] be two tuples such that xA = yA = a. Since x and y
have the same public attribute values, the only way to distinguish between
them is by their private attribute values. The equivalence classes [x] and [y]
are disjoint; hence, the combination of public and private attribute values x
is not possible for [y], and the combination of public and private attribute
values y is not possible for [x].
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Given a pair (idz, zA) ∈ TID such that zA = a, the values of pT ([x]) and
pT ([y]) allow the combination of private attributes possible for z to be ex-
posed. For example, if pT ([x]) = 0, the attacker can rule out the possibility
that z = x.

Claim 2 If S(a) contains exactly one equivalence class, then no combina-
tion of private attributes can be eliminated for any tuple that has the same
span.

Proof Let xA ∈ A be a tuple such that S(xA) = S(a). Let y, z ∈ D be two
tuples such that yA = zA = xA. Regardless of the private attribute values of
y and z, it holds that [y] = [z]. Otherwise, S(xA) would contain more than
a single equivalence class, in contradiction to the assumption. Therefore,
y and z both represent equally possible combinations of private attribute
values for the tuple xA, regardless of the population function pT .

Corollary 1 A release exposes private information on the population of a
span if and only if the span contains more than one equivalence class.

We will now see exactly how a release can be exploited to infer private
knowledge about individuals. Given a public identifiable database TID and
a model M , we use S(a)TID = {(idx, xA) ∈ TID : S(xA) = S(a)]} to denote
the set of tuples that appear in TID and whose span is S(a). These are tuples
from TID which are indistinguishable with respect to the model M – each
of them is associated with the same set of equivalence classes. Knowing the
values of pT for each equivalence class in S(a) would allow an attacker to
constrain the possible private attribute value combinations for the tuples
in S(a)TID . For example, in the mortgage company’s decision tree, the span
represented by leaf 4 [Female, Unmarried ] contains two equivalence classes,
which differ on the private attribute Loan Risk. Tuples that belong to the
good equivalence class cannot have the private attribute bad Loan Risk, and
vice versa. Given tuples that belong to a span with more than one equiv-
alence class, the populations of each can be used to constrain the possible
private attribute value combinations, hence compromising the privacy of
the individuals.

On the basis of this discussion we define a linking attack as follows:

Definition 6 (Linking attack using a model) A linking attack on the
privacy of tuples in a table T from domain A × B, using a release MT , is
carried out by

1. Taking a public identifiable database TID which contains the identities of
individuals and their public attributes A.

2. Computing the span for each tuple in TID.
3. Grouping together all the tuples in TID that have the same span. This

results in sets of tuples, where each set is associated with one span.
4. Listing the possible private attribute value combinations for each span,

according to the release MT .
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The tuples that are associated with a span in the third step are now
linked to the private attribute value combinations possible for this span
according to the fourth step.

For instance, an attacker who knows the identity, gender and marital sta-
tus of each of the mortgage company’s clients in Table 1 can see, by applying
the model, that Donna, Emily and Fiona will be classified by means of leaf
3 [Female, Married ]. This leaf constitutes the span of the relevant tuples. It
contains two equivalence classes: one, with a population of 3, of individuals
who are identified as bad loan risks, and another, with a population of 0,
of individuals who are identified as good loan risks. Therefore the attacker
can link Donna, Emily and Fiona to 3 bad loan risk classifications. This
example stresses the difference between anonymity and inference of private
data. As mentioned in Section 2.1, anonymity depends only on the size of
a group of identifiable individuals, regardless of inferred private attribute
values. Hence, so long as the k constraint is 3 or less, this information alone
does not constitute a k-anonymity breach.

Definition 7 (k-anonymous release) A release MT is k-anonymous with
respect to a table T if a linking attack on the tuples in T using the release
MT will not succeed in linking private data to fewer than k individuals.

Claim 3 A release MT is k-anonymous with respect to a table T if, for
every x ∈ T , either or both of the following hold:

1. S(xA) = {[x]}
2. |S(xA)T | ≥ k

Recall that while S(xA)T may be different for various tables T , the set of
equivalence classes S(xA) depends only on the model M .

Proof Assume an attacker associated an individual’s tuple (idx, xA) ∈ TID

with its span S(xA). We will show that if one of the conditions holds, the
attacker cannot compromise the k-anonymity of x. Since this holds for all
tuples in T , the release is proven to be k-anonymous.

1. S(xA) = {[x]}. Since the equivalence class [x] is the only one in S(xA),
then according to Claim 2, tuples whose span is S(xA) belong to [x] re-
gardless of their private attribute values. Therefore, no private attribute
value can be associated with the span, and the attacker gains no pri-
vate knowledge from the model in this case. In other words, even if the
attacker manages to identify a group of less than k individuals and asso-
ciate them with S(xA), no private information will be exposed through
this association.

2. |S(xA)T | ≥ k. In this case, the model and the equivalence class popula-
tions might reveal to the attacker as much as the exact values of private
attributes for tuples in T that belong to equivalence classes in S(xA).
However, since |S(xA)T | ≥ k, the number of individuals (tuples) that
can be associated with the span is k or greater.
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Note that the first condition pertains to a case that is not mentioned in
the original k-anonymity model. This condition characterizes a span that
groups tuples by public attributes alone. In the context of tables it is equiv-
alent to suppressing the private attribute values for a set of rows. Clearly
there is no privacy risk in this case, even if the set contains less than k rows.

We conclude this section by stressing how the formal definitions relate
to the intuitive notion of anonymity that was presented in the beginning
of the section. Each equivalence class relates to a subset of tuples which
adhere to the same condition on public and private attributes. In that sense,
the equivalence class is equivalent to a unique combination of public and
private attributes in a row that appears in the private database. Just as
a private database does not necessarily adhere to k-anonymity constraints,
an equivalence class may contain any number of tuples. However, the spans
represent the data as perceived by an attacker whose knowledge is limited to
public attributes. Tuples that share the same span have a similar projection
on the public domain. k or more tuples that share the same span would
result in k or more rows that have the same public attribute values in an
equivalent table.

4 Examples

In this section we show how the definition of model k-anonymity given in
Section 3 can be used to verify whether a given data mining model violates
the k-anonymity of individuals whose data was used for its induction.

4.1 k-Anonymity of a Decision Tree

Assume a mortgage company has the data shown in Table 4 and wishes to
release the decision tree in Figure 2, which clients can use to see whether
they are eligible for a loan. Can the company release this decision tree while
retaining 3-anonymity for the data in the table?

The Marital Status of each individual is common knowledge, and thus a
public attribute, while the classification good/bad loan risk is private knowl-
edge. We will consider two cases, in which the Sports Car attribute can be
either public or private.

The decision tree is a function that maps points in the original domain
to the leaves of the tree, and inside the leaves, to bins, according to the
class value. Hence those bins constitute partitions of the domain – each bin
forms an equivalence class and contains all the tuples that are routed to it.

For example, the leaf lUnmarried contains one good loan risk classifica-
tion, and one bad loan risk classification. That is, that leaf contains two
bins, distinguished by means of the Loan Risk attribute. One tuple from T
is routed to the bin labeled bad, and one tuple is routed to the bin labeled
good.
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Table 4 Mortgage company data

Name Marital Sports Loan
Status Car Risk

Lisa Unmarried Yes good

John Married Yes good

Ben Married No bad

Laura Married No bad

Robert Unmarried Yes bad

Anna Unmarried No bad

When both Sports Car and Marital Status are public attributes, the
decision tree compromises k-anonymity. For example, the tuple John is the
only one in the span containing the equivalence classes good, bad in the leaf
lMarried. Note that in the special case that all the attributes in a decision
tree are public and the Class attribute is private, the tree is k-anonymous
if and only if every leaf contains at least k learning examples or no learning
examples at all.

If the Sports Car attribute is private, the decision tree implies just
two spans: {lMarried/good, lMarried/bad, lno/good, lno/bad} for John, Ben, and
Laura (since the attacker can route these tuples to any of the leaves lNo,
lMarried), and {lUnmarried/good, lUnmarried/bad, lno/good, lno/bad} for Lisa,
Robert, and Anna (since the attacker can route these tuples to any of the
leaves lNo, lUnmarried). As each of these spans contains 3 tuples, the decision
tree maintains 3-anonymity.

Fig. 2 A k-anonymous decision tree

Sports Car

Marital Status

Yes No

Married Unmarried

1 good
0 bad

1 good
1 bad

0 good
3 bad

lMarried lUnmarried

lNo

l0

lYes

4.2 Clustering

Assume that a data owner has the data shown in Table 5 and generates the
clustering model shown in Figure 3. Now, he wishes to release the knowledge
that his customers form four major groups: One in zip code 11001, compris-
ing customers with various income levels; a second group, of high income
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Table 5 Individuals’ data

Name Zip Code Income

John 11001 98k

Cathy 11001 62k

Ben 13010 36k

Laura 13010 115k

William 14384 44k

Lisa 15013 100k

customers, living mainly in zip codes 13010 and 14384; a third group, of
low income customers, living mainly in zip codes 13010, 14384 and 15012;
and a fourth group in zip code 15013, comprising medium and high in-
come customers. This knowledge is released by publication of four centroids,
c1, c2, c3, c4, which represent those groups, and imply a partitioning of the
domain into four areas, C1, ..., C4, by assigning the nearest centroid to each
point in the domain.

The zip code of each individual is common knowledge, but the income
level is private data held only by the data owner. We ask whether the data
owner can release this knowledge while retaining 2-anonymity for the data
in the table.

Each of the areas Ci implied by the centroids constitutes an equivalence
class, and every tuple x is assigned an equivalence class according to its Zip
Code and Income attribute values. The span of a tuple x consists of all the
areas that x may belong to when the income corresponding to that tuple is
varied across the full range of the data.

The span of John and Cathy is {C1}, because no matter what their
income is, any tuple whose zip code is 11001 would be associated (according
to Figure 3) with c1. Because this span has two tuples, it maintains their
anonymity.

The span of Ben, Laura and William is {C2, C3}, because unless their
income is known, each tuple in the span can be related to either of the two
centroids c2, c3. This ambiguity maintains the anonymity of these tuples.

The span of Lisa is {C3, C4}. It can be seen that this span is not shared
by any other tuple; thus, by our definitions, this clustering model compro-
mises 2-anonymity. To see why, consider an attacker who attacks the model
with a public table which includes individual names and zip codes. Given
the populations of the equivalence classes, the attacker knows that at least
one individual has to be related to c4. The attacker concludes that Lisa’s
tuple is the only candidate, and thus Lisa’s income level is high. Hence
Lisa’s privacy has been breached.
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Fig. 3 Clustering model
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4.3 k-Anonymity of Association Rules

Assume that a retailer providing both grocery and pharmaceutical products
wishes to provide association rules to an independent marketer. While every-
one can see what grocery products a customer purchased (i.e., such items
are public knowledge), pharmaceutical products are carried in opaque bags
whose content is known only to the customer and the retailer.

After mining the data of some 1,000 customers, the retailer discovers
two rules: (Cherries =⇒ Viagra), with 8.4% support and 75% confidence,
and (Cherries, Birthday Candles =⇒ Tylenol), with 2.4% support and 80%
confidence. Can these rules be transferred to the marketer without compro-
mising customer anonymity?

Given a rule and a tuple, the tuple may contain just a subset of the items
on the left-hand side of the rule; all of the items on the left-hand side of the
rule; or all of the items on both the left-hand side and the right-hand side
of the rule. Applying these three options for each of the two rules results in
a model with nine equivalence classes1.

By looking at customers’ shopping carts, any attacker would be able to
separate the customers into three groups, each constituting a span:

S1: Those who did not buy Cherries. The model does not disclose any
information about the private items of this group (this span contains a
single equivalence class).

S2: Those who bought both Cherries and Birthday Candles. Using the con-
fidence and support values of the rules, the attacker can learn private
information about their Viagra and Tylenol purchases (this span con-
tains four equivalence classes).

1 In fact there are only seven equivalence classes, since the rules overlap: A tuple
that does not contain items from the left-hand side of the first rule (’no cherries’)
cannot be classified as containing the items on the left-hand side or on both sides
of the second rule.
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S3: Those who bought Cherries and did not buy Birthday Candles. Using
the confidence and support values of the rules, the attacker can learn
private information about their Viagra purchases (this span contains
two equivalence classes).

We can now compute the implied population of every span. There are
1000·0.084

0.75 = 112 customers who bought cherries (with or without birthday
candles). There are 1000·0.024

0.8 = 30 customers who bought both cherries and
birthday candles, and 112 − 30 = 82 customers who bought cherries and
did not buy birthday candles. There are 1000 − 112 = 888 customers who
did not buy cherries at all. Therefore, a linking attack would link 888, 30
and 82 individuals to S1, S2 and S3 respectively. Using the confidence of
the rule (Cherries, Birthday Candles =⇒ Tylenol), an attacker can deduce
that of the 30 customers linked to S2, 24 bought Tylenol and 6 did not,
which is a breach if the retailer wishes to retain k-anonymity for k > 30.

We conclude that if the objective of the retailer is to retain 30-anonymity,
then it can safely release both rules. However, if the retailer wishes to retain
higher anonymity, the second rule cannot be released because it would allow
an attacker to link a small group of customers to the purchase of Tylenol.

5 k-Anonymity Preserving Data Mining Algorithms

In the previous section we used our definition of k-anonymity to test whether
an existing model violates the anonymity of individuals. However, it is
very probable that the output of a data mining algorithm used on non-
anonymized data would cause a breach of anonymity. Hence the need for
techniques to produce models which inherently maintain a given anonymity
constraint. We now demonstrate data mining algorithms which guarantee
that only k-anonymous models will be produced.

5.1 Inducing k-Anonymized Decision Trees

We present an algorithm that generates k-anonymous decision trees, given
a set of tuples T , assuming |T | > k. The outline is given in Algorithm 1.
We accompany the description of the algorithm with an illustration of a 3-
anonymous decision tree induction, given in Figure 4. It shows an execution
of the algorithm using the data in Table 4 as input. Marital Status is a public
attribute; Sports Car and Loan risk are private attributes. The result of the
execution is the decision tree in Figure 2.

The algorithm is based on concepts similar to those of the well-known
ID3 decision tree induction algorithm [30]. The algorithm begins with a tree
consisting of just the root and a set of learning examples associated with the
root. Then it follows a hill climbing heuristic that splits the set of learning
examples according to the value the examples have for a selected attribute.
Of all the given nodes and attributes by which it can split the data, the
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algorithm selects the one which yields the highest gain (for a specific gain
function – e.g., Information Gain or the Gini Index), provided that such a
split would not cause a breach of k-anonymity. Note that unlike the ID3
algorithm, our algorithm does not use recursion; we consider instead all the
splitting possibilities of all the leaves in a single queue, ordered by their gain.
That is because splitting leaves might affect the k-anonymity of tuples in
other leaves.

For simplicity, we embed generalization in the process by considering
each possible generalization of an attribute as an independent attribute.
Alternatively, e.g., for continuous attributes, we can start with attributes
at their lowest generalization level. Whenever a candidate compromises
anonymity and is removed from the candidate list, we insert into the can-
didate list a new candidate with a generalized version of the attribute. In
that case, when generating candidates for a new node, we should consider
attributes at their lowest generalization level, even if they were discarded
by an ancestor node.

Algorithm 1 Inducing k-Anonymous Decision Tree
1: procedure MakeTree(T,A,k)

. T – dataset, A – list of attributes, k – anonymity parameter
2: r ← root node.
3: candList← {(a, r) : a ∈ A}
4: while candList contains candidates with positive gain do
5: bestCand← candidate from candList with highest gain.
6: if bestCand maintains k-anonymity then
7: Apply the split and generate new nodes N .
8: Remove candidates with the split node from candList.
9: candList← candList ∪ {(a, n) : a ∈ A, n ∈ N}.

10: else
11: remove bestCand from candList.
12: end if
13: end while
14: return generated tree.
15: end procedure

To decide whether a proposed split in line 6 would breach k-anonymity,
the algorithm maintains a list of all tuples, partitioned to groups Ts accord-
ing to the span s they belong to. Additionally, at every bin on every leaf,
the span containing that bin s(b) is stored. Lastly, for every span there is a
flag indicating whether it is pointed to by a single bin or by multiple bins.

Initially, in line 2, the following conditions hold:

– the only leaf is the root;
– there are as many bins as class values;
– there is just one span if the class is private;
– there are as many spans as class values if the class is public.
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If the class is private, the population of the single span is T and its flag is
set to multiple. If it is public, the population of every span is the portion of
T which has the respective class value, and the flag of every span is set to
single.

In Figure 4, we begin with the root node l0, which contains two bins,
one for each class value. As the class value is private, only one span s0 is
created: it contains the two bins and its flag is set to multiple. Ts0, the
population of s0, is comprised of all the tuples.

Fig. 4 Inducing a 3-anonymous decision tree
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When a leaf is split, all of its bins are also split. The algorithm updates
the data structure as follows:

– If the splitting attribute is public, then the spans are split as well, and
tuples in Ts are distributed among them according to the value of the
splitting attribute. Every new bin will point to the corresponding span,
and the flag of every new span will inherit the value of the old one.

– If the splitting attribute is private, then every new bin will inherit the
old span. The flag of that span will be set to multiple.

If splitting a leaf results in a span with population smaller than k and its
flag set to multiple, k-anonymity will be violated. In that case the splitting
is rolled back and the algorithm proceeds to consider the attribute with the
next largest gain.

In the example, there are two candidates for splitting the root node:
the Sports Car attribute and the Marital Status attribute. The first one is
chosen due to higher information gain. Two new leaves are formed, lY es and
lNo, and the bins are split among them according to the chosen attribute.
Since the Sports Car attribute is private, an attacker will not be able to
use this split to distinguish between tuples, and hence the same span s0

is maintained, with the same population of size> 3 (hence 3-anonymous).
There are two remaining candidates. Splitting lNo with MaritalStatus is
discarded due to zero information gain. The node lY es is split using the
public MaritalStatus. As a consequence, all the bins in s0 are also split
according to the attribute, and s0 is split to two new spans, s1 and s2, each
with a population of three tuples, hence maintaining 3-anonymity.
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5.2 Inducing k-Anonymized Clusters

We present an algorithm that generates k-anonymous clusters, given a set of
tuples T , assuming |T | > k. The algorithm is based on a top-down approach
to clustering [34].

The algorithm starts by constructing a minimal spanning tree (MST)
of the data. This tree represents a single equivalence class, and therefore a
single span. Then, in consecutive steps, the longest MST edges are deleted
to generate clusters. Whenever an edge is deleted, a cluster (equivalence
class) Ci is split into two clusters (two equivalence classes), Ci1 and Ci2 .
As a consequence, every span M = {C1, ..., Ci, ..., Cm} that contained this
equivalence class is now split into three spans:

1. S1 = {C1, ..., Ci1 , ..., Cm}, containing the points from Ci which, accord-
ing to the public attribute values, may belong only to Ci1 ;

2. S2 = {C1, ..., Ci2 , ..., Cm}, containing the points from Ci which, accord-
ing to the public attribute values, may belong only to Ci2 ;

3. S3 = {C1, ..., Ci1 , Ci2 , ..., Cm}, containing the points from Ci which, ac-
cording to the public attribute values, may belong either to Ci1 and
Ci2 .

The points that belonged to M are now split between the three spans.
If we can link to each of the new spans at least k points, or no points at all,
then the split maintains anonymity. Otherwise, the split is not performed.
Edges are deleted iteratively in each new cluster, until no split that would
maintain anonymity can be performed. When this point is reached, the
algorithm concludes. The algorithm can also be terminated at any earlier
point, when the data owner decides that enough clusters have been formed.

Fig. 5 Inducing k-anonymous clusters
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To see how the algorithm is executed, assume a data domain that con-
tains two attributes. The attribute age is public, while the attribute result,
indicating a result of a medical examination, is private. Figure 5 shows sev-
eral points in the domain, and an MST that was constructed over these
points.
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The algorithm proceeds as follows: At first, the MST forms a single
cluster (equivalence class) C1, containing all the points, and a single span
S1 = {C1}. Then the edge CD, which is the longest, is removed. Two clusters
form as a result: C2 = {A,B,C} and C3 = {D,E, F, G}. Consequently,
we get three spans: S2 = {C2}, to which the points A,B,C are linked;
S3 = {C3}, to which the points D,E, F, G are linked; and S4 = {C2, C3},
to which no point is linked, and can therefore be ignored. In C3, the longest
edge is DE. Removing it will split the cluster into C4 = {D} and C5 =
{E,F, G}. Then the span S3, which contains the split cluster C3, is split
into three spans: S5 = {C4}, to which no point is linked; S6 = {C5}, to
which no point is linked; and S7 = {C4, C5}, to which the points D,E, F, G
are linked. Note that although point D is the only one in equivalence class
C4, this does not compromise k-anonymity, because the public attributes
do not reveal enough information to distinguish it from the points E,F,G
in cluster C5. Although the algorithm may continue to check other possible
splits, it can be terminated at this point, after forming three clusters.

6 Experimental Evaluation

In this section we provide some experimental evidence to demonstrate the
usefulness of the model we presented. We focus on the decision tree clas-
sification problem and present results based on the decision tree algorithm
from Section 5.1.

To conduct our experiments we use a straightforward implementation
of the algorithm, based on the Weka package [40]. We use as a benchmark
the Adults database from the UC Irvine Machine Learning Repository [13],
which contains census data, and has become a commonly used benchmark
for k-anonymity. The data set has 6 continuous attributes and 8 categorial
attributes. We use the income level as the class attribute, with two possible
income levels, ≤ 50K or > 50K. After records with missing values have
been removed, there are 30,162 records for training and 15,060 records for
testing (of which 24.5% are classified > 50K). For the categorial attributes
we use the same hierarchies described in [18]. We dropped the continuous
attributes because of ID3 limitations. The experiment was performed on a
3.0GHz Pentium IV processor with 512MB memory.

The anonymized ID3 algorithm uses the training data to induce an
anonymous decision tree. Then the test data (in a non-anonymized form)
is classified using the anonymized tree. For all values of k the decision tree
induction took less than 6 seconds.

6.1 Accuracy vs. Anonymity Tradeoffs in ID3

The introduction of privacy constraints forces loss of information. As a
consequence, a classifier is induced with less accurate data and its accuracy
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Fig. 6 Classification error vs. k parameter
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is expected to decrease. Our first goal is to assess how our method impacts
this tradeoff between classification accuracy and the privacy constraint.

Figure 6 shows the classification error of the anonymous ID3 for various k
parameters. We provide an ID3 baseline, as well as a C4.5 baseline (obtained
using 0.27 confidence factor), to contrast the pruning affect of k-anonymity.
In spite of the anonymity constraint, the classifier maintains good accuracy.
At k = 750 there is a local optimum when the root node is split using
the Relationship attribute at its lowest generalization level. At k = 1000
this attribute is discarded since it compromises anonymity, and instead the
Marital Status attribute is chosen at its second lowest generalization level,
yielding better classification.

We compare the classification error with the one obtained using the top-
down specialization (TDS) algorithm presented in [18] on the same data
set and the same attributes and taxonomy trees. The TDS algorithm starts
with the topmost generalization level and chooses, in every iteration, the
best specialization. The best specialization is determined according to a
metric that measures the information gain for each unit of anonymity loss.
The generalization obtained by the algorithm is then used to anonymize
all the tuples. We compare our anonymous decision tree with an ID3 tree
induced with the anonymized TDS output. The results obtained using TDS
also appear in Figure 6. In contrast to the TDS algorithm, our algorithm can
apply different generalizations on different groups of tuples, and it achieves
an average reduction of 0.6% in classification error with respect to TDS.

6.2 Model-based k-Anonymization

In Section 3 we discussed the concept of equivalence between data mining
models and their table representation. Based on this concept, we can use
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data mining techniques to anonymize data. Each span defines an anonymiza-
tion for a group of at least k tuples.

When the data owner knows in advance which technique will be used
to mine the data, it is possible to anonymize the data using a matching
technique. This kind of anonymization would be very similar to embedding
the anonymization within the data mining process. However, when the al-
gorithm for analysis is not known in advance, would a data-mining-based
anonymization algorithm still be useful? To answer this question, we next
assess the value of the anonymous decision tree as an anonymization tech-
nique for use with other classification algorithms.

To make this assessment, we measured the classification metric (origi-
nally proposed in [21]) for the induced decision trees. This metric was also
used in [7] for optimizing anonymization for classification purposes. In our
terminology, the classification metric assigns a penalty 1 to every tuple x
that does not belong to the majority class of S(x), CM =

∑
∀S |Minority(S)|.

We compare our results with the k-Optimal algorithm presented in [7], which
searches the solution domain to find an optimal anonymization with respect
to a given metric. We discarded the Relationship attribute, since it is not
used in [7]. Note also that we do not make use of the Age attribute, which
is used in [7]. This puts our algorithm at a disadvantage. [7] reports several
CM values, depending on the partitioning imposed on the Age attribute and
the limit on number of suppressions allowed (our algorithm makes no use of
suppressions at all). We present in Table 6 the ranges of CM values reported
in [7] alongside the CM results achieved by our algorithm. Our algorithm
obtains similar (sometimes superior) CM results in a shorter runtime.

Table 6 Classification metric comparison

k k-Optimal Anonymous-DT

10 5230-5280 5198

25 5280-5330 5273

50 5350-5410 5379

100 5460 5439

Successful competition with optimal single-dimension anonymizations
using multi-dimensional anonymizations has already been discussed in [26].
However, our results give rise to an additional observation: Intuitively it may
seem that using a specific data mining algorithm to generalize data would
“over-fit” the anonymization scheme to the specific algorithm, decreasing
the ability to successfully mine the data using other algorithms. However,
the CM results presented above suggest that this kind of anonymization may
be at least as useful as metric-driven (and algorithm oblivious) anonymiza-
tion.
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6.3 Privacy Risks and `-Diversity

As mentioned in Section 2.1, k-anonymity makes no restriction regarding the
private attribute values. As a consequence, it is possible that a k-anonymous
model would allow the attacker a complete inference of these values. In this
section, our goal is to assess how many individuals are prone to immediate
inference attacks and investigate whether such inference can be thwarted
using the `-Diversity model [28].

Specifically, we look at the number of individuals (learning examples)
for whom an attacker may infer the class attribute value with full certainty.
This is done by considering all the spans for which all the tuples share
the same class, and counting the number of tuples associated with these
spans. Figure 7 shows the percentage of tuples exposed to such inference,
as a function of the parameter k. Avoiding this kind of inference completely
requires high values of k, and even in those cases the attacker may still be
able to infer attribute values with high probability.

Fig. 7 % Exposed tuples
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The `-diversity model suggests solving this problem by altering the pri-
vacy constraint to one that requires a certain amount of diversity in class
values for every group of identifiable tuples. For example, entropy `-diversity
is maintained when the entropy of the class values for every such group ex-
ceeds a threshold value log(`).

We altered our algorithm to enforce the entropy `-diversity constraint:
instead of checking the number of tuples associated with each span, we
calculated the class entropy and compared it to the threshold log(`), ruling
out splits in the tree that violate this constraint. Before presenting the
results, we make some observations about entropy `-diversity. In the given
data set there are two class values. This means that the best level of diversity
we can hope for is entropy 2-diversity, when there is equal chance for each
class value, in which case we have no classification ability. Therefore, in this
context, the parameters for k-anonymity and `-diversity are not comparable.
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Fig. 8 Confidence level vs. accuracy
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However, when we have two class values and ` < 2, entropy `-diversity
allows us to limit the attacker’s confidence in inference attacks. For example,
to deny the attacker the ability to infer a class value with confidence>
85%, we should keep the entropy higher than −0.85 × log 0.85 − 0.15 ×
log 0.15 = 0.61. This amounts to applying entropy `-diversity with ` = 1.526
(log 1.526 = 0.61). Based on this, Figure 8 displays the tradeoff between the
confidence limit imposed on the attacker and the accuracy of the induced
decision tree. According to our results, so long as the confidence limit is
high enough, the `-diversity constraint allows the induction of decision trees
without a significant accuracy penalty. The lowest achievable confidence
level is 75.1%, as it pertains to the class distribution in the root node.
Moreover, every split of the root node will result in a node with confidence>
85%. Therefore, a confidence limit of 85% or lower prohibits the induction
of a useful decision tree.

7 Related Work

The problem of k-anonymity has been addressed in many papers. The first
methods presented for k-anonymization were bottom-up, relying on general-
ization and suppression of the input tuples [31,32,39]. Heuristic methods for
k-anonymization that guarantee optimal k-anonymity were suggested in [7,
25]. Iyengar [21] suggested a metric for k-anonymizing data used in classifi-
cation problems, and used genetic algorithms for the anonymization process.
A top-down approach, suggested in [18], preserves data patterns used for
decision tree classification. Another top down approach, suggested in [8]
utilizes usage metrics to bound generalization and guide the anonymization
process. When the above methods are compared to specific implementa-
tions of ours (such as the one described in Section 5.1), several differences
are revealed. First, while all these methods anonymize an attribute across
all tuples, ours selectively anonymizes attributes for groups of tuples. Sec-
ond, our method is general and thus can be easily adjusted for any data
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mining task. For example, one could think of applying our method in one
way for classification using decision trees and in another for classification
using Bayesian classifiers. In both respects, using our method is expected
to yield better data mining results, as was demonstrated in Section 6 for
decision tree induction.

A recent independent work [26] discusses multi-dimensional global recod-
ing techniques for anonymization. Anonymity is achieved by mapping the
domains of the quasi-identifier attributes to generalized or altered values,
such that each mapping may depend on the combination of values over sev-
eral dimensions. The authors suggest that multi-dimensional recoding may
lend itself to creating anonymizations that are useful for building data min-
ing models. Indeed, the methods we presented in this paper can be classified
as multi-dimensional global recoding techniques, and complement the afore-
mentioned work. Another multi-dimensional approach is presented in [3].
The authors provide an O(k)-approximation algorithm for k-anonymity, us-
ing a graph representation, and provide improved approximation algorithms
for k = 2 and k = 3. Their approximation strives to minimize the cost of
anonymization, determined by the number of entries generalized and the
level of anonymization. One drawback of applying multi-dimensional global
recoding before mining data is the difficulty of using the anonymized results
as input for a data mining algorithm. For example, determining the infor-
mation gain of an attribute may not be trivial when the input tuples are
generalized to different levels. Our approach circumvents this difficulty by
embedding the anonymization within the data mining process, thus allowing
the data mining algorithm access to the non-anonymized data.

Embedding k-anonymity in data mining algorithms was discussed in [6]
in the context of pattern discovery. The authors do not distinguish between
private and public items, and focus on identifying patterns that apply for
fewer than k transactions. The authors present an algorithm for detecting
inference channels in released sets of itemsets. Although this algorithm is of
exponential complexity, they suggest an optimization that allows running
time to be reduced by an order of magnitude. A subsequent work [5] shows
how to apply this technique to assure anonymous output of frequent itemset
mining. In comparison, our approach allows breaches of k-anonymity to
be detected and k-anonymization to be embedded in a broader range of
data mining models. We intend to further explore the implications of our
approach on itemset mining in future research.

Several recent works suggest new privacy definitions that can be used to
overcome the vulnerability of k-anonymity with respect to data diversity.
Wang et al. [38] offer a template-based approach for defining privacy. Ac-
cording to their method, a data owner can define risky inference channels
and prevent learning of specific private attribute values, while maintaining
the usefulness of the data for classification. This kind of privacy is attained
by selective suppression of attribute values. [28] presents the `-diversity
principle: Every group of individuals that can be isolated by an attacker
should contain at least ` “well-represented” values for a sensitive attribute.
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As noted in [28], k-anonymization methods can be easily altered to provide
`-diversity. We showed in Section 6 that our method can also be applied to `-
diversification by adding private value restrictions on spans. Our definitions
can be easily augmented with any further restriction on private attributes
values, such as those presented in [38]. Kantarcioǧlu et al. [23] suggest an-
other definition for privacy of data mining results, according to the ability
of the attacker to infer private data using a released “black box” classifier.
While this approach constitutes a solution to the inference vulnerability of
k-anonymity, it is not clear how to apply it to data mining algorithms such
that their output is guaranteed to satisfy privacy definitions.

A different approach for privacy in data mining suggests that data min-
ing should be performed on perturbed data [2,9,11,12,15,16,23]. This ap-
proach is applied mainly in the context of statistical databases.

Cryptographic methods were proposed for privacy-preserving data min-
ing in multiparty settings [14,19,22,27,36]. These methods deal with the
preservation of privacy in the process of data mining and are thus comple-
mentary to our work, which deals with the privacy of the output.

We refer the interested reader to [37] for further discussion of privacy
preserving data mining.

8 Conclusions

Traditionally, the data owner would anonymize the data and then release
it. Often, a researcher would then take the released data and mine it to
extract some knowledge. However, the process of anonymization is oblivi-
ous to any future analysis that would be carried out on the data. Therefore,
during anonymization, attributes critical for the analysis may be suppressed
whereas those that are not suppressed may turn out to be irrelevant. When
there are many public attributes the problem is even more difficult, due
to the curse of dimensionality [1]. In that case, since the data points are
distributed sparsely, the process of k-anonymization reduces the effective-
ness of data mining algorithms on the anonymized data and renders privacy
preservation impractical.

Using data mining techniques as a basis for k-anonymization has two
major benefits, which arise from the fact that different data mining tech-
niques consider different representations of data. First, such anonymization
algorithms are optimized to preserve specific data patterns according to the
underlying data mining technique. While this approach is more appealing
when the data owner knows in advance which tool will be used to mine the
data, our experiments show that these anonymizations may also be adequate
when this is not the case. Second, as illustrated in section 3, anonymization
algorithms based on data mining techniques may apply different general-
izations for several groups of tuples rather than the same generalization for
all tuples. In this way, it may be possible to retain more useful information.
This kind of anonymization, however, has its downsides, one of which is that
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using different generalization levels for different tuples requires that the data
mining algorithms be adapted. Therefore, we believe that this model will
be particularly useful when the anonymity constraints are embedded within
the data mining process, so that the data mining algorithm has access to
the non-anonymized data.

To harness the power of data mining, our work proposes extended defin-
itions of k-anonymity that allow the anonymity provided by a data mining
model to be analyzed. Data owners can thus exchange models which retain
the anonymity of their clients. Researchers looking for new anonymization
techniques can take advantage of efficient data mining algorithms: they can
use the extended definitions to analyze and maintain the anonymity of the
resulting models, and then use the anonymity preserving models as gen-
eralization functions. Lastly, data miners can use the definitions to create
algorithms guaranteed to produce anonymous models.
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